Quantifying stability of quantum statistical ensembles

We investigate different measures of stability of quantum statistical ensembles with respect to local measurements. We call a quantum statistical ensemble ‘stable’ if a small number of local measurements cannot significantly modify the total-energy distribution representing the ensemble. First, we n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hahn, Walter (VerfasserIn) , Fine, Boris V. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 February 2018
In: Journal of statistical mechanics: theory and experiment
Year: 2018, Heft: 2
ISSN:1742-5468
DOI:10.1088/1742-5468/aaa799
Online-Zugang:Verlag, Volltext: https://doi.org/10.1088/1742-5468/aaa799
Verlag, Volltext: https://doi.org/10.1088%2F1742-5468%2Faaa799
Volltext
Verfasserangaben:Walter Hahn, and Boris V. Fine
Beschreibung
Zusammenfassung:We investigate different measures of stability of quantum statistical ensembles with respect to local measurements. We call a quantum statistical ensemble ‘stable’ if a small number of local measurements cannot significantly modify the total-energy distribution representing the ensemble. First, we numerically calculate the evolution of the stability measure introduced in our previous work Hahn and Fine (2016 Phys. Rev. E 94 062106) for an ensemble representing a mixture of two canonical ensembles with very different temperatures in a periodic chain of interacting spins-. Second, we propose other possible stability measures and discuss their advantages and disadvantages. We also show that, for small system sizes available to numerical simulations of local measurements, finite-size effects are rather pronounced.
Beschreibung:Gesehen am 20.08.2019
Beschreibung:Online Resource
ISSN:1742-5468
DOI:10.1088/1742-5468/aaa799