The L-homology fundamental class for IP-spaces and the stratified Novikov conjecture

An IP-space is a pseudomanifold whose defining local properties imply that its middle perversity global intersection homology groups satisfy Poincaré duality integrally. We show that the symmetric signature induces a map of Quinn spectra from IP bordism to the symmetric L-spectrum of ZZ{\mathbb {Z}...

Full description

Saved in:
Bibliographic Details
Main Authors: Banagl, Markus (Author) , Laures, Gerd (Author) , McClure, James E. (Author)
Format: Article (Journal)
Language:English
Published: 06 February 2019
In: Selecta mathematica
Year: 2019, Volume: 25, Issue: 7, Pages: 1-104
ISSN:1420-9020
DOI:10.1007/s00029-019-0458-y
Online Access:Verlag, Volltext: https://doi.org/10.1007/s00029-019-0458-y
Get full text
Author Notes:Markus Banagl, Gerd Laures, James E. McClure
Description
Summary:An IP-space is a pseudomanifold whose defining local properties imply that its middle perversity global intersection homology groups satisfy Poincaré duality integrally. We show that the symmetric signature induces a map of Quinn spectra from IP bordism to the symmetric L-spectrum of ZZ{\mathbb {Z}}, which is, up to weak equivalence, an E∞E∞E_\infty ring map. Using this map, we construct a fundamental L-homology class for IP-spaces, and as a consequence we prove the stratified Novikov conjecture for IP-spaces whose fundamental group satisfies the Novikov conjecture.
Item Description:Gesehen am 22.08.2019
Physical Description:Online Resource
ISSN:1420-9020
DOI:10.1007/s00029-019-0458-y