Reanalysis of 24 nearby open clusters using Gaia data

We have developed a fully automated cluster characterization pipeline, which simultaneously determines cluster membership and fits the fundamental cluster parameters: distance, reddening, and age. We present results for 24 established clusters and compare them to literature values. Given the large a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yen, Steffi Xiang-Ting (VerfasserIn) , Reffert, Sabine (VerfasserIn) , Röser, Siegfried (VerfasserIn) , Schilbach, Elena (VerfasserIn) , Kharchenko, Nina V. (VerfasserIn) , Piskunov, Anatoly E. (VerfasserIn)
Dokumenttyp: Article (Journal) Konferenzschrift
Sprache:Englisch
Veröffentlicht: 07 March 2018
In: Proceedings of the International Astronomical Union
Year: 2017, Jahrgang: 12, Heft: S330, Pages: 281-282
ISSN:1743-9221
DOI:10.1017/S1743921317006366
Online-Zugang:Verlag, Volltext: https://doi.org/10.1017/S1743921317006366
Verlag, Volltext: https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/reanalysis-of-24-nearby-open-clusters-using-gaia-data/8BB097E2BD60B3EE2ACE1D4B734FC3A7
Volltext
Verfasserangaben:Steffi X. Yen, Sabine Reffert, Siegfried Röser, Elena Schilbach, Nina V. Kharchenko and Anatoly E. Piskunov
Beschreibung
Zusammenfassung:We have developed a fully automated cluster characterization pipeline, which simultaneously determines cluster membership and fits the fundamental cluster parameters: distance, reddening, and age. We present results for 24 established clusters and compare them to literature values. Given the large amount of stellar data for clusters available from Gaia DR2 in 2018, this pipeline will be beneficial to analyzing the parameters of open clusters in our Galaxy.
Beschreibung:Gesehen am 16.02.2021
Beschreibung:Online Resource
ISSN:1743-9221
DOI:10.1017/S1743921317006366