Active learning using deep Bayesian networks for surgical workflow analysis

Purpose For many applications in the field of computer-assisted surgery, such as providing the position of a tumor, specifying the most probable tool required next by the surgeon or determining the...

Saved in:
Bibliographic Details
Main Authors: Bodenstedt, Sebastian (Author) , Wagner, Martin (Author) , Müller, Beat P. (Author)
Format: Article (Journal)
Language:English
Published: 9 April 2019
In: International journal of computer assisted radiology and surgery
Year: 2019, Volume: 14, Issue: 6, Pages: 1079-1087
ISSN:1861-6429
DOI:10.1007/s11548-019-01963-9
Online Access:Verlag, Volltext: https://doi.org/10.1007/s11548-019-01963-9
Verlag, Volltext: https://link.springer.com/article/10.1007/s11548-019-01963-9
Get full text
Author Notes:Sebastian Bodenstedt, Dominik Rivoir, Alexander Jenke, Martin Wagner, Michael Breucha, Beat Müller-Stich, Sören Torge Mees, Jürgen Weitz, Stefanie Speidel
Description
Summary:Purpose For many applications in the field of computer-assisted surgery, such as providing the position of a tumor, specifying the most probable tool required next by the surgeon or determining the...
Item Description:Gesehen am 11.09.2019
Physical Description:Online Resource
ISSN:1861-6429
DOI:10.1007/s11548-019-01963-9