Cubical geometry in the polygonalisation complex

We introduce the polygonalisation complex of a surface, a cube complex whose vertices correspond to polygonalisations. This is a geometric model for the mapping class group and it is motivated by works of Harer, Mosher and Penner. Using properties of the flip graph, we show that the midcubes in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bell, Mark C. (VerfasserIn) , Disarlo, Valentina (VerfasserIn) , Tang, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2019
In: Mathematical proceedings of the Cambridge Philosophical Society
Year: 2019, Jahrgang: 167, Heft: 1, Pages: 1-22
ISSN:1469-8064
DOI:10.1017/S0305004118000130
Online-Zugang:Verlag, Volltext: https://doi.org/10.1017/S0305004118000130
Verlag: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/cubical-geometry-in-the-polygonalisation-complex/329A12E1BAB737B5FD361ACC4A573D23
Volltext
Verfasserangaben:Mark C. Bell, Valentina Disarlo, Robert Tang
Beschreibung
Zusammenfassung:We introduce the polygonalisation complex of a surface, a cube complex whose vertices correspond to polygonalisations. This is a geometric model for the mapping class group and it is motivated by works of Harer, Mosher and Penner. Using properties of the flip graph, we show that the midcubes in the polygonalisation complex can be extended to a family of embedded and separating hyperplanes, parametrised by the arcs in the surface.We study the crossing graph of these hyperplanes and prove that it is quasi-isometric to the arc complex. We use the crossing graph to prove that, generically, different surfaces have different polygonalisation complexes. The polygonalisation complex is not CAT(0), but we can characterise the vertices where Gromov's link condition fails. This gives a tool for proving that, generically, the automorphism group of the polygonalisation complex is the (extended) mapping class group of the surface.
Beschreibung:Gesehen am 15.10.2019
Beschreibung:Online Resource
ISSN:1469-8064
DOI:10.1017/S0305004118000130