Cubical geometry in the polygonalisation complex

We introduce the polygonalisation complex of a surface, a cube complex whose vertices correspond to polygonalisations. This is a geometric model for the mapping class group and it is motivated by works of Harer, Mosher and Penner. Using properties of the flip graph, we show that the midcubes in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bell, Mark C. (VerfasserIn) , Disarlo, Valentina (VerfasserIn) , Tang, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2019
In: Mathematical proceedings of the Cambridge Philosophical Society
Year: 2019, Jahrgang: 167, Heft: 1, Pages: 1-22
ISSN:1469-8064
DOI:10.1017/S0305004118000130
Online-Zugang:Verlag, Volltext: https://doi.org/10.1017/S0305004118000130
Verlag: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/cubical-geometry-in-the-polygonalisation-complex/329A12E1BAB737B5FD361ACC4A573D23
Volltext
Verfasserangaben:Mark C. Bell, Valentina Disarlo, Robert Tang

MARC

LEADER 00000caa a2200000 c 4500
001 1678924326
003 DE-627
005 20220817001821.0
007 cr uuu---uuuuu
008 191015s2019 xx |||||o 00| ||eng c
024 7 |a 10.1017/S0305004118000130  |2 doi 
035 |a (DE-627)1678924326 
035 |a (DE-599)KXP1678924326 
035 |a (OCoLC)1341248096 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bell, Mark C.  |e VerfasserIn  |0 (DE-588)1197092501  |0 (DE-627)1678925063  |4 aut 
245 1 0 |a Cubical geometry in the polygonalisation complex  |c Mark C. Bell, Valentina Disarlo, Robert Tang 
264 1 |c July 2019 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.10.2019 
520 |a We introduce the polygonalisation complex of a surface, a cube complex whose vertices correspond to polygonalisations. This is a geometric model for the mapping class group and it is motivated by works of Harer, Mosher and Penner. Using properties of the flip graph, we show that the midcubes in the polygonalisation complex can be extended to a family of embedded and separating hyperplanes, parametrised by the arcs in the surface.We study the crossing graph of these hyperplanes and prove that it is quasi-isometric to the arc complex. We use the crossing graph to prove that, generically, different surfaces have different polygonalisation complexes. The polygonalisation complex is not CAT(0), but we can characterise the vertices where Gromov's link condition fails. This gives a tool for proving that, generically, the automorphism group of the polygonalisation complex is the (extended) mapping class group of the surface. 
700 1 |a Disarlo, Valentina  |e VerfasserIn  |0 (DE-588)1154551067  |0 (DE-627)1015937667  |0 (DE-576)501098070  |4 aut 
700 1 |a Tang, Robert  |e VerfasserIn  |0 (DE-588)1197092749  |0 (DE-627)1678925721  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical proceedings of the Cambridge Philosophical Society  |d Cambridge [u.a.] : Cambridge Univ. Press, 1975  |g 167(2019), 1, Seite 1-22  |h Online-Ressource  |w (DE-627)300897928  |w (DE-600)1483586-1  |w (DE-576)081894880  |x 1469-8064  |7 nnas  |a Cubical geometry in the polygonalisation complex 
773 1 8 |g volume:167  |g year:2019  |g number:1  |g pages:1-22  |g extent:22  |a Cubical geometry in the polygonalisation complex 
856 4 0 |u https://doi.org/10.1017/S0305004118000130  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/cubical-geometry-in-the-polygonalisation-complex/329A12E1BAB737B5FD361ACC4A573D23  |x Verlag 
951 |a AR 
992 |a 20191015 
993 |a Article 
994 |a 2019 
998 |g 1154551067  |a Disarlo, Valentina  |m 1154551067:Disarlo, Valentina  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PD1154551067  |e 110100PD1154551067  |e 110000PD1154551067  |e 110400PD1154551067  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1678924326  |e 3522933907 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Bell, Mark C.","role":"aut","family":"Bell","given":"Mark C."},{"given":"Valentina","family":"Disarlo","role":"aut","roleDisplay":"VerfasserIn","display":"Disarlo, Valentina"},{"display":"Tang, Robert","roleDisplay":"VerfasserIn","role":"aut","family":"Tang","given":"Robert"}],"title":[{"title_sort":"Cubical geometry in the polygonalisation complex","title":"Cubical geometry in the polygonalisation complex"}],"language":["eng"],"recId":"1678924326","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 15.10.2019"],"name":{"displayForm":["Mark C. Bell, Valentina Disarlo, Robert Tang"]},"id":{"doi":["10.1017/S0305004118000130"],"eki":["1678924326"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"July 2019"}],"relHost":[{"id":{"zdb":["1483586-1"],"eki":["300897928"],"issn":["1469-8064"]},"origin":[{"publisherPlace":"Cambridge [u.a.]","dateIssuedKey":"1975","publisher":"Cambridge Univ. Press","dateIssuedDisp":"1975-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Mathematical proceedings of the Cambridge Philosophical Society","title_sort":"Mathematical proceedings of the Cambridge Philosophical Society"}],"part":{"year":"2019","issue":"1","pages":"1-22","volume":"167","text":"167(2019), 1, Seite 1-22","extent":"22"},"pubHistory":["Volume 77, issue 1 (January 1975)-"],"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Cambridge Philosophical Society","role":"isb"}],"recId":"300897928","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 08.09.25"],"disp":"Cubical geometry in the polygonalisation complexMathematical proceedings of the Cambridge Philosophical Society"}],"physDesc":[{"extent":"22 S."}]} 
SRT |a BELLMARKCDCUBICALGEO2019