Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis

Technological advances enable assaying multiplexed spatially resolved RNA and protein expression profiling of individual cells, thereby capturing molecular variations in physiological contexts. While these methods are increasingly accessible, computational approaches for studying the interplay of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arnol, Damien (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn) , Stegle, Oliver (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 October 2019
In: Cell reports
Year: 2019, Jahrgang: 29, Heft: 1, Pages: 202-211.e6
ISSN:2211-1247
DOI:10.1016/j.celrep.2019.08.077
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.celrep.2019.08.077
Verlag: http://www.sciencedirect.com/science/article/pii/S2211124719311325
Volltext
Verfasserangaben:Damien Arnol, Denis Schapiro, Bernd Bodenmiller, Julio Saez-Rodriguez, Oliver Stegle
Beschreibung
Zusammenfassung:Technological advances enable assaying multiplexed spatially resolved RNA and protein expression profiling of individual cells, thereby capturing molecular variations in physiological contexts. While these methods are increasingly accessible, computational approaches for studying the interplay of the spatial structure of tissues and cell-cell heterogeneity are only beginning to emerge. Here, we present spatial variance component analysis (SVCA), a computational framework for the analysis of spatial molecular data. SVCA enables quantifying different dimensions of spatial variation and in particular quantifies the effect of cell-cell interactions on gene expression. In a breast cancer Imaging Mass Cytometry dataset, our model yields interpretable spatial variance signatures, which reveal cell-cell interactions as a major driver of protein expression heterogeneity. Applied to high-dimensional imaging-derived RNA data, SVCA identifies plausible gene families that are linked to cell-cell interactions. SVCA is available as a free software tool that can be widely applied to spatial data from different technologies.
Beschreibung:Gesehen am 29.10.2019
Beschreibung:Online Resource
ISSN:2211-1247
DOI:10.1016/j.celrep.2019.08.077