Dynamical criticality and domain-wall coupling in long-range Hamiltonians

Dynamical quantum phase transitions hold a deep connection to the underlying equilibrium physics of the quench Hamiltonian. In a recent study [J. C. Halimeh et al., arXiv:1810.07187] it has been numerically demonstrated that the appearance of anomalous cusps in the Loschmidt return rate coincides wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Defenu, Nicolò (VerfasserIn) , Enss, Tilman (VerfasserIn) , Halimeh, Jad C. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 July 2019
In: Physical review
Year: 2019, Jahrgang: 100
ISSN:2469-9969
DOI:10.1103/PhysRevB.100.014434
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevB.100.014434
Verlag: https://link.aps.org/doi/10.1103/PhysRevB.100.014434
Volltext
Verfasserangaben:Nicolò Defenu, Tilman Enss, and Jad C. Halimeh
Beschreibung
Zusammenfassung:Dynamical quantum phase transitions hold a deep connection to the underlying equilibrium physics of the quench Hamiltonian. In a recent study [J. C. Halimeh et al., arXiv:1810.07187] it has been numerically demonstrated that the appearance of anomalous cusps in the Loschmidt return rate coincides with the presence of bound domain walls in the spectrum of the quench Hamiltonian. Here we consider transverse-field Ising chains with power-law and exponentially decaying interactions, and show that by removing domain-wall coupling via a truncated Jordan-Wigner transformation onto a Kitaev chain with long-range hopping and pairing, anomalous dynamical criticality is no longer present. This indicates that bound domain walls are necessary for anomalous cusps to appear in the Loschmidt return rate. We also calculate the dynamical phase diagram of the Kitaev chain with long-range hopping and pairing, which in the case of power-law couplings is shown to exhibit rich dynamical criticality including a doubly critical dynamical phase.
Beschreibung:Gesehen am 30.10.2019
Beschreibung:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.100.014434