High thermoelectric power factor from multilayer solution-processed organic films
We investigate the suitability of the “sequential doping” method of organic semiconductors for thermoelectric applications. The method consists of depositing a dopant (F4TCNQ) containing solution on a previously cast semiconductor (P3HT) thin film to achieve high conductivity, while preserving the m...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
21 February 2018
|
| In: |
Applied physics letters
Year: 2018, Jahrgang: 112, Heft: 8 |
| ISSN: | 1077-3118 |
| DOI: | 10.1063/1.5016908 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1063/1.5016908 Verlag, Volltext: https://aip.scitation.org/doi/10.1063/1.5016908 |
| Verfasserangaben: | Guangzheng Zuo, Olof Andersson, Hassan Abdalla, and Martijn Kemerink |
| Zusammenfassung: | We investigate the suitability of the “sequential doping” method of organic semiconductors for thermoelectric applications. The method consists of depositing a dopant (F4TCNQ) containing solution on a previously cast semiconductor (P3HT) thin film to achieve high conductivity, while preserving the morphology. For very thin films (∼25 nm), we achieve a high power factor around 8 μW/mK−2 with a conductivity over 500 S/m. For the increasing film thickness, conductivity and power factor show a decreasing trend, which we attribute to the inability to dope the deeper parts of the film. Since thick films are required to extract significant power from thermoelectric generators, we developed a simple additive technique that allows the deposition of an arbitrary number of layers without significant loss in conductivity or power factor that, for 5 subsequent layers, remain at ∼300 S/m and ∼5 μW/mK−2, respectively, whereas the power output increases almost one order of magnitude as compared to a single layer. The efficient doping in multilayers is further confirmed by an increased intensity of (bi)polaronic features in the UV-Vis spectra. |
|---|---|
| Beschreibung: | Gesehen am 27.11.2019 |
| Beschreibung: | Online Resource |
| ISSN: | 1077-3118 |
| DOI: | 10.1063/1.5016908 |