Nanoscale organic ferroelectric resistive switches

Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their op...

Full description

Saved in:
Bibliographic Details
Main Authors: Khikhlovskyi, Vsevolod (Author) , Wang, Rui (Author) , Breemen, Albert J. J. M. van (Author) , Gelinck, Gerwin (Author) , Janssen, René A. J. (Author) , Kemerink, Martijn (Author)
Format: Article (Journal)
Language:English
Published: January 23, 2014
In: The journal of physical chemistry. C, Energy, materials, and catalysis
Year: 2014, Volume: 118, Issue: 6, Pages: 3305-3312
ISSN:1932-7455
DOI:10.1021/jp409757m
Online Access:Verlag, Volltext: https://doi.org/10.1021/jp409757m
Get full text
Author Notes:Vsevolod Khikhlovskyi, Rui Wang, Albert J.J.M. van Breemen, Gerwin H. Gelinck, René A.J. Janssen, and Martijn Kemerink
Description
Summary:Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their operational mechanism. Resistive switching is shown to result from modulation of the charge injection barrier at the semiconductor-electrode interfaces. The modulation is driven by the stray field of the polarization charges in the ferroelectric phase and consequently is restricted to regions where semiconductor and ferroelectric phases exist in close vicinity. Since each semiconductor domain can individually be switched and read out, a novel, nanoscale memory element is demonstrated. An ultimate information density of ∼30 Mb/cm2 is estimated for this bottom-up defined memory device.
Item Description:Gesehen am 18.12.2019
Physical Description:Online Resource
ISSN:1932-7455
DOI:10.1021/jp409757m