Schottky groups and maximal representations

We describe a construction of Schottky type subgroups of automorphism groups of partially cyclically ordered sets. We apply this construction to the Shilov boundary of a Hermitian symmetric space and show that in this setting Schottky subgroups correspond to maximal representations of fundamental gr...

Full description

Saved in:
Bibliographic Details
Main Authors: Burelle, Jean-Philippe (Author) , Treib, Nicolaus (Author)
Format: Article (Journal)
Language:English
Published: 2018
In: Geometriae dedicata
Year: 2017, Volume: 195, Issue: 1, Pages: 215-239
ISSN:1572-9168
DOI:10.1007/s10711-017-0285-2
Online Access:Verlag, Volltext: https://doi.org/10.1007/s10711-017-0285-2
Get full text
Author Notes:Jean-Philippe Burelle, Nicolaus Treib
Description
Summary:We describe a construction of Schottky type subgroups of automorphism groups of partially cyclically ordered sets. We apply this construction to the Shilov boundary of a Hermitian symmetric space and show that in this setting Schottky subgroups correspond to maximal representations of fundamental groups of surfaces with boundary. As an application, we construct explicit fundamental domains for the action of maximal representations into $$\mathrm {Sp}(2n,\mathbb {R})$$Sp(2n,R)on $$\mathbb {RP}^{2n-1}$$RP2n-1.
Item Description:Published online: 13 October 2017
Gesehen am 30.01.2020
Physical Description:Online Resource
ISSN:1572-9168
DOI:10.1007/s10711-017-0285-2