Schottky groups and maximal representations

We describe a construction of Schottky type subgroups of automorphism groups of partially cyclically ordered sets. We apply this construction to the Shilov boundary of a Hermitian symmetric space and show that in this setting Schottky subgroups correspond to maximal representations of fundamental gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burelle, Jean-Philippe (VerfasserIn) , Treib, Nicolaus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: Geometriae dedicata
Year: 2017, Jahrgang: 195, Heft: 1, Pages: 215-239
ISSN:1572-9168
DOI:10.1007/s10711-017-0285-2
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s10711-017-0285-2
Volltext
Verfasserangaben:Jean-Philippe Burelle, Nicolaus Treib

MARC

LEADER 00000caa a2200000 c 4500
001 1688925635
003 DE-627
005 20220817220326.0
007 cr uuu---uuuuu
008 200130r20182017xx |||||o 00| ||eng c
024 7 |a 10.1007/s10711-017-0285-2  |2 doi 
035 |a (DE-627)1688925635 
035 |a (DE-599)KXP1688925635 
035 |a (OCoLC)1341299808 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Burelle, Jean-Philippe  |e VerfasserIn  |0 (DE-588)1203817088  |0 (DE-627)1688926143  |4 aut 
245 1 0 |a Schottky groups and maximal representations  |c Jean-Philippe Burelle, Nicolaus Treib 
264 1 |c 2018 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 13 October 2017 
500 |a Gesehen am 30.01.2020 
520 |a We describe a construction of Schottky type subgroups of automorphism groups of partially cyclically ordered sets. We apply this construction to the Shilov boundary of a Hermitian symmetric space and show that in this setting Schottky subgroups correspond to maximal representations of fundamental groups of surfaces with boundary. As an application, we construct explicit fundamental domains for the action of maximal representations into $$\mathrm {Sp}(2n,\mathbb {R})$$Sp(2n,R)on $$\mathbb {RP}^{2n-1}$$RP2n-1. 
534 |c 2017 
700 1 |a Treib, Nicolaus  |d 1987-  |e VerfasserIn  |0 (DE-588)1154965236  |0 (DE-627)1016277164  |0 (DE-576)501338942  |4 aut 
773 0 8 |i Enthalten in  |t Geometriae dedicata  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972  |g 195(2018), 1, Seite 215-239  |h Online-Ressource  |w (DE-627)270127585  |w (DE-600)1476497-0  |w (DE-576)104194103  |x 1572-9168  |7 nnas  |a Schottky groups and maximal representations 
773 1 8 |g volume:195  |g year:2018  |g number:1  |g pages:215-239  |g extent:25  |a Schottky groups and maximal representations 
856 4 0 |u https://doi.org/10.1007/s10711-017-0285-2  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20200130 
993 |a Article 
994 |a 2018 
998 |g 1154965236  |a Treib, Nicolaus  |m 1154965236:Treib, Nicolaus  |d 110000  |e 110000PT1154965236  |k 0/110000/  |p 2  |y j 
999 |a KXP-PPN1688925635  |e 3583414349 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"25 S."}],"relHost":[{"note":["Gesehen am 01.12.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Schottky groups and maximal representationsGeometriae dedicata","language":["eng"],"recId":"270127585","pubHistory":["1.1972/73 -"],"part":{"year":"2018","issue":"1","pages":"215-239","volume":"195","text":"195(2018), 1, Seite 215-239","extent":"25"},"title":[{"title_sort":"Geometriae dedicata","title":"Geometriae dedicata"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1972-","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1972"}],"id":{"issn":["1572-9168"],"eki":["270127585"],"zdb":["1476497-0"]}}],"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"id":{"doi":["10.1007/s10711-017-0285-2"],"eki":["1688925635"]},"name":{"displayForm":["Jean-Philippe Burelle, Nicolaus Treib"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Published online: 13 October 2017","Gesehen am 30.01.2020"],"language":["eng"],"recId":"1688925635","title":[{"title_sort":"Schottky groups and maximal representations","title":"Schottky groups and maximal representations"}],"person":[{"roleDisplay":"VerfasserIn","display":"Burelle, Jean-Philippe","role":"aut","family":"Burelle","given":"Jean-Philippe"},{"given":"Nicolaus","family":"Treib","role":"aut","roleDisplay":"VerfasserIn","display":"Treib, Nicolaus"}]} 
SRT |a BURELLEJEASCHOTTKYGR2018