Schottky groups and maximal representations

We describe a construction of Schottky type subgroups of automorphism groups of partially cyclically ordered sets. We apply this construction to the Shilov boundary of a Hermitian symmetric space and show that in this setting Schottky subgroups correspond to maximal representations of fundamental gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burelle, Jean-Philippe (VerfasserIn) , Treib, Nicolaus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: Geometriae dedicata
Year: 2017, Jahrgang: 195, Heft: 1, Pages: 215-239
ISSN:1572-9168
DOI:10.1007/s10711-017-0285-2
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s10711-017-0285-2
Volltext
Verfasserangaben:Jean-Philippe Burelle, Nicolaus Treib
Beschreibung
Zusammenfassung:We describe a construction of Schottky type subgroups of automorphism groups of partially cyclically ordered sets. We apply this construction to the Shilov boundary of a Hermitian symmetric space and show that in this setting Schottky subgroups correspond to maximal representations of fundamental groups of surfaces with boundary. As an application, we construct explicit fundamental domains for the action of maximal representations into $$\mathrm {Sp}(2n,\mathbb {R})$$Sp(2n,R)on $$\mathbb {RP}^{2n-1}$$RP2n-1.
Beschreibung:Published online: 13 October 2017
Gesehen am 30.01.2020
Beschreibung:Online Resource
ISSN:1572-9168
DOI:10.1007/s10711-017-0285-2