Vectorial Drinfeld modular forms over Tate algebras

In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of Γ:=GL2(Fq[θ])Γ:=GL2(𝔽q[𝜃])<math display="inline" overflow="scroll" altimg...

Full description

Saved in:
Bibliographic Details
Main Authors: Pellarin, Federico (Author) , Perkins, Rudolph (Author)
Format: Article (Journal)
Language:English
Published: 26 January 2018
In: International journal of number theory
Year: 2018, Volume: 14, Issue: 6, Pages: 1729-1783
ISSN:1793-0421
DOI:10.1142/S1793042118501063
Online Access:Verlag, Volltext: https://doi.org/10.1142/S1793042118501063
Verlag, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042118501063
Get full text
Author Notes:Federico Pellarin, Rudolph B. Perkins
Description
Summary:In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of Γ:=GL2(Fq[θ])Γ:=GL2(𝔽q[𝜃])<math display="inline" overflow="scroll" altimg="eq-00001.gif"><mi mathvariant="normal">Γ</mi><mspace width=".17em" class="thinspace"></mspace><mo class="MathClass-punc">:</mo><mo class="MathClass-rel">=</mo><mspace width=".17em" class="thinspace"></mspace><msub><mrow><mo class="qopname">GL</mo></mrow><mrow><mn>2</mn></mrow></msub><mo class="MathClass-open" stretchy="false">(</mo><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo class="MathClass-open" stretchy="false">[</mo><mi>𝜃</mi><mo class="MathClass-close" stretchy="false">]</mo><mo class="MathClass-close" stretchy="false">)</mo></math>). Among several results that we prove here, we determine the complete structure of the modules of these forms, we describe their specializations at roots of unity and their connection with Drinfeld modular forms for congruence subgroups of ΓΓ<math display="inline" overflow="scroll" altimg="eq-00002.gif"><mi mathvariant="normal">Γ</mi></math> and we prove that the modules generated by these forms are stable under the actions of Hecke operators.
Item Description:Gesehen am 07.02.2020
Physical Description:Online Resource
ISSN:1793-0421
DOI:10.1142/S1793042118501063