Vectorial Drinfeld modular forms over Tate algebras

In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of Γ:=GL2(Fq[θ])Γ:=GL2(𝔽q[𝜃])<math display="inline" overflow="scroll" altimg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pellarin, Federico (VerfasserIn) , Perkins, Rudolph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 January 2018
In: International journal of number theory
Year: 2018, Jahrgang: 14, Heft: 6, Pages: 1729-1783
ISSN:1793-0421
DOI:10.1142/S1793042118501063
Online-Zugang:Verlag, Volltext: https://doi.org/10.1142/S1793042118501063
Verlag, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042118501063
Volltext
Verfasserangaben:Federico Pellarin, Rudolph B. Perkins

MARC

LEADER 00000caa a2200000 c 4500
001 1689657057
003 DE-627
005 20220817224700.0
007 cr uuu---uuuuu
008 200207s2018 xx |||||o 00| ||eng c
024 7 |a 10.1142/S1793042118501063  |2 doi 
035 |a (DE-627)1689657057 
035 |a (DE-599)KXP1689657057 
035 |a (OCoLC)1341304226 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Pellarin, Federico  |e VerfasserIn  |0 (DE-588)1204297975  |0 (DE-627)1689657162  |4 aut 
245 1 0 |a Vectorial Drinfeld modular forms over Tate algebras  |c Federico Pellarin, Rudolph B. Perkins 
264 1 |c 26 January 2018 
300 |a 65 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.02.2020 
520 |a In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of Γ:=GL2(Fq[θ])Γ:=GL2(q[])<math display="inline" overflow="scroll" altimg="eq-00001.gif"><mi mathvariant="normal">Γ</mi><mspace width=".17em" class="thinspace"></mspace><mo class="MathClass-punc">:</mo><mo class="MathClass-rel">=</mo><mspace width=".17em" class="thinspace"></mspace><msub><mrow><mo class="qopname">GL</mo></mrow><mrow><mn>2</mn></mrow></msub><mo class="MathClass-open" stretchy="false">(</mo><msub><mrow><mi></mi></mrow><mrow><mi>q</mi></mrow></msub><mo class="MathClass-open" stretchy="false">[</mo><mi></mi><mo class="MathClass-close" stretchy="false">]</mo><mo class="MathClass-close" stretchy="false">)</mo></math>). Among several results that we prove here, we determine the complete structure of the modules of these forms, we describe their specializations at roots of unity and their connection with Drinfeld modular forms for congruence subgroups of ΓΓ<math display="inline" overflow="scroll" altimg="eq-00002.gif"><mi mathvariant="normal">Γ</mi></math> and we prove that the modules generated by these forms are stable under the actions of Hecke operators. 
700 1 |a Perkins, Rudolph  |d 1985-  |e VerfasserIn  |0 (DE-588)1179132238  |0 (DE-627)1066525277  |0 (DE-576)518024121  |4 aut 
773 0 8 |i Enthalten in  |t International journal of number theory  |d Singapore [u.a.] : World Scientific, 2005  |g 14(2018), 6, Seite 1729-1783  |h Online-Ressource  |w (DE-627)497607670  |w (DE-600)2200412-9  |w (DE-576)120281813  |x 1793-0421  |7 nnas  |a Vectorial Drinfeld modular forms over Tate algebras 
773 1 8 |g volume:14  |g year:2018  |g number:6  |g pages:1729-1783  |g extent:65  |a Vectorial Drinfeld modular forms over Tate algebras 
856 4 0 |u https://doi.org/10.1142/S1793042118501063  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.worldscientific.com/doi/abs/10.1142/S1793042118501063  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20200207 
993 |a Article 
994 |a 2018 
998 |g 1179132238  |a Perkins, Rudolph  |m 1179132238:Perkins, Rudolph  |d 700000  |d 708000  |e 700000PP1179132238  |e 708000PP1179132238  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
999 |a KXP-PPN1689657057  |e 3589606681 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Pellarin","given":"Federico","display":"Pellarin, Federico","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Perkins, Rudolph","given":"Rudolph","family":"Perkins"}],"title":[{"title":"Vectorial Drinfeld modular forms over Tate algebras","title_sort":"Vectorial Drinfeld modular forms over Tate algebras"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 07.02.2020"],"language":["eng"],"recId":"1689657057","name":{"displayForm":["Federico Pellarin, Rudolph B. Perkins"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"26 January 2018"}],"id":{"eki":["1689657057"],"doi":["10.1142/S1793042118501063"]},"physDesc":[{"extent":"65 S."}],"relHost":[{"pubHistory":["1.2005 -"],"part":{"extent":"65","volume":"14","text":"14(2018), 6, Seite 1729-1783","pages":"1729-1783","issue":"6","year":"2018"},"note":["Gesehen am 20.10.22"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Vectorial Drinfeld modular forms over Tate algebrasInternational journal of number theory","recId":"497607670","language":["eng"],"title":[{"title":"International journal of number theory","subtitle":"(IJNT)","title_sort":"International journal of number theory"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Singapore [u.a.]","dateIssuedDisp":"2005-","publisher":"World Scientific","dateIssuedKey":"2005"}],"id":{"eki":["497607670"],"zdb":["2200412-9"],"issn":["1793-0421"]}}]} 
SRT |a PELLARINFEVECTORIALD2620