Vectorial Drinfeld modular forms over Tate algebras
In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of Γ:=GL2(Fq[θ])Γ:=GL2(𝔽q[𝜃])<math display="inline" overflow="scroll" altimg...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
26 January 2018
|
| In: |
International journal of number theory
Year: 2018, Jahrgang: 14, Heft: 6, Pages: 1729-1783 |
| ISSN: | 1793-0421 |
| DOI: | 10.1142/S1793042118501063 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1142/S1793042118501063 Verlag, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042118501063 |
| Verfasserangaben: | Federico Pellarin, Rudolph B. Perkins |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1689657057 | ||
| 003 | DE-627 | ||
| 005 | 20220817224700.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200207s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1142/S1793042118501063 |2 doi | |
| 035 | |a (DE-627)1689657057 | ||
| 035 | |a (DE-599)KXP1689657057 | ||
| 035 | |a (OCoLC)1341304226 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Pellarin, Federico |e VerfasserIn |0 (DE-588)1204297975 |0 (DE-627)1689657162 |4 aut | |
| 245 | 1 | 0 | |a Vectorial Drinfeld modular forms over Tate algebras |c Federico Pellarin, Rudolph B. Perkins |
| 264 | 1 | |c 26 January 2018 | |
| 300 | |a 65 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.02.2020 | ||
| 520 | |a In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of Γ:=GL2(Fq[θ])Γ:=GL2(q[])<math display="inline" overflow="scroll" altimg="eq-00001.gif"><mi mathvariant="normal">Γ</mi><mspace width=".17em" class="thinspace"></mspace><mo class="MathClass-punc">:</mo><mo class="MathClass-rel">=</mo><mspace width=".17em" class="thinspace"></mspace><msub><mrow><mo class="qopname">GL</mo></mrow><mrow><mn>2</mn></mrow></msub><mo class="MathClass-open" stretchy="false">(</mo><msub><mrow><mi></mi></mrow><mrow><mi>q</mi></mrow></msub><mo class="MathClass-open" stretchy="false">[</mo><mi></mi><mo class="MathClass-close" stretchy="false">]</mo><mo class="MathClass-close" stretchy="false">)</mo></math>). Among several results that we prove here, we determine the complete structure of the modules of these forms, we describe their specializations at roots of unity and their connection with Drinfeld modular forms for congruence subgroups of ΓΓ<math display="inline" overflow="scroll" altimg="eq-00002.gif"><mi mathvariant="normal">Γ</mi></math> and we prove that the modules generated by these forms are stable under the actions of Hecke operators. | ||
| 700 | 1 | |a Perkins, Rudolph |d 1985- |e VerfasserIn |0 (DE-588)1179132238 |0 (DE-627)1066525277 |0 (DE-576)518024121 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t International journal of number theory |d Singapore [u.a.] : World Scientific, 2005 |g 14(2018), 6, Seite 1729-1783 |h Online-Ressource |w (DE-627)497607670 |w (DE-600)2200412-9 |w (DE-576)120281813 |x 1793-0421 |7 nnas |a Vectorial Drinfeld modular forms over Tate algebras |
| 773 | 1 | 8 | |g volume:14 |g year:2018 |g number:6 |g pages:1729-1783 |g extent:65 |a Vectorial Drinfeld modular forms over Tate algebras |
| 856 | 4 | 0 | |u https://doi.org/10.1142/S1793042118501063 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://www.worldscientific.com/doi/abs/10.1142/S1793042118501063 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200207 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1179132238 |a Perkins, Rudolph |m 1179132238:Perkins, Rudolph |d 700000 |d 708000 |e 700000PP1179132238 |e 708000PP1179132238 |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 999 | |a KXP-PPN1689657057 |e 3589606681 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Pellarin","given":"Federico","display":"Pellarin, Federico","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Perkins, Rudolph","given":"Rudolph","family":"Perkins"}],"title":[{"title":"Vectorial Drinfeld modular forms over Tate algebras","title_sort":"Vectorial Drinfeld modular forms over Tate algebras"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 07.02.2020"],"language":["eng"],"recId":"1689657057","name":{"displayForm":["Federico Pellarin, Rudolph B. Perkins"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"26 January 2018"}],"id":{"eki":["1689657057"],"doi":["10.1142/S1793042118501063"]},"physDesc":[{"extent":"65 S."}],"relHost":[{"pubHistory":["1.2005 -"],"part":{"extent":"65","volume":"14","text":"14(2018), 6, Seite 1729-1783","pages":"1729-1783","issue":"6","year":"2018"},"note":["Gesehen am 20.10.22"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Vectorial Drinfeld modular forms over Tate algebrasInternational journal of number theory","recId":"497607670","language":["eng"],"title":[{"title":"International journal of number theory","subtitle":"(IJNT)","title_sort":"International journal of number theory"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Singapore [u.a.]","dateIssuedDisp":"2005-","publisher":"World Scientific","dateIssuedKey":"2005"}],"id":{"eki":["497607670"],"zdb":["2200412-9"],"issn":["1793-0421"]}}]} | ||
| SRT | |a PELLARINFEVECTORIALD2620 | ||