Stability of Landau-Ginzburg branes

Abstract: We evaluate the ideas of Π-stability at the Landau-Ginzburg (LG) point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of “R-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 August 2005
In: Journal of mathematical physics
Year: 2005, Jahrgang: 46, Heft: 8
ISSN:1089-7658
DOI:10.1063/1.2007590
Online-Zugang:Verlag, Volltext: https://doi.org/10.1063/1.2007590
Verlag: https://aip.scitation.org/doi/10.1063/1.2007590
Volltext
Verfasserangaben:Johannes Walcher
Beschreibung
Zusammenfassung:Abstract: We evaluate the ideas of Π-stability at the Landau-Ginzburg (LG) point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of “R-stability” for matrix factorizations of quasihomogeneous LG potentials. The D0-brane on the quintic at the Landau-Ginzburg point is not obviously unstable. Aiming to relate R-stability to a moduli space problem, we then study the action of the gauge group of similarity transformations on matrix factorizations. We define a naive moment maplike flow on the gauge orbits and use it to study boundary flows in several examples. Gauge transformations of nonzero degree play an interesting role for brane-antibrane annihilation. We also give a careful exposition of the grading of the Landau-Ginzburg category of B-branes, and prove an index theorem for matrix factorizations.
Beschreibung:Gesehen am 21.02.2020
Beschreibung:Online Resource
ISSN:1089-7658
DOI:10.1063/1.2007590