Stability of Landau-Ginzburg branes
Abstract: We evaluate the ideas of Π-stability at the Landau-Ginzburg (LG) point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of “R-s...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
22 August 2005
|
| In: |
Journal of mathematical physics
Year: 2005, Jahrgang: 46, Heft: 8 |
| ISSN: | 1089-7658 |
| DOI: | 10.1063/1.2007590 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1063/1.2007590 Verlag: https://aip.scitation.org/doi/10.1063/1.2007590 |
| Verfasserangaben: | Johannes Walcher |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1690617330 | ||
| 003 | DE-627 | ||
| 005 | 20220817235141.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200221s2005 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1063/1.2007590 |2 doi | |
| 035 | |a (DE-627)1690617330 | ||
| 035 | |a (DE-599)KXP1690617330 | ||
| 035 | |a (OCoLC)1341307709 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Walcher, Johannes |d 1973- |e VerfasserIn |0 (DE-588)1089078978 |0 (DE-627)85098114X |0 (DE-576)459955098 |4 aut | |
| 245 | 1 | 0 | |a Stability of Landau-Ginzburg branes |c Johannes Walcher |
| 264 | 1 | |c 22 August 2005 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 21.02.2020 | ||
| 520 | |a Abstract: We evaluate the ideas of Π-stability at the Landau-Ginzburg (LG) point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of “R-stability” for matrix factorizations of quasihomogeneous LG potentials. The D0-brane on the quintic at the Landau-Ginzburg point is not obviously unstable. Aiming to relate R-stability to a moduli space problem, we then study the action of the gauge group of similarity transformations on matrix factorizations. We define a naive moment maplike flow on the gauge orbits and use it to study boundary flows in several examples. Gauge transformations of nonzero degree play an interesting role for brane-antibrane annihilation. We also give a careful exposition of the grading of the Landau-Ginzburg category of B-branes, and prove an index theorem for matrix factorizations. | ||
| 773 | 0 | 8 | |i Enthalten in |t Journal of mathematical physics |d College Park, Md. : American Inst. of Physics, 1960 |g 46(2005,8) Artikel-Nummer 082305, 28 Seiten |h Online-Ressource |w (DE-627)268755221 |w (DE-600)1472481-9 |w (DE-576)077609190 |x 1089-7658 |7 nnas |a Stability of Landau-Ginzburg branes |
| 773 | 1 | 8 | |g volume:46 |g year:2005 |g number:8 |g extent:29 |a Stability of Landau-Ginzburg branes |
| 856 | 4 | 0 | |u https://doi.org/10.1063/1.2007590 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://aip.scitation.org/doi/10.1063/1.2007590 |x Verlag |
| 951 | |a AR | ||
| 992 | |a 20200221 | ||
| 993 | |a Article | ||
| 994 | |a 2005 | ||
| 998 | |g 1089078978 |a Walcher, Johannes |m 1089078978:Walcher, Johannes |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1690617330 |e 3597306209 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"29 S."}],"relHost":[{"part":{"extent":"29","text":"46(2005,8) Artikel-Nummer 082305, 28 Seiten","volume":"46","issue":"8","year":"2005"},"titleAlt":[{"title":"Journal of mathematical physics online"}],"pubHistory":["1.1960 -"],"recId":"268755221","language":["eng"],"note":["Gesehen am 25.04.2023"],"disp":"Stability of Landau-Ginzburg branesJournal of mathematical physics","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Journal of mathematical physics","title":"Journal of mathematical physics"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["268755221"],"zdb":["1472481-9"],"issn":["1089-7658"]},"origin":[{"publisherPlace":"College Park, Md.","dateIssuedDisp":"1960-","publisher":"American Inst. of Physics","dateIssuedKey":"1960"}],"name":{"displayForm":["publ. by the American Institute of Physics"]}}],"origin":[{"dateIssuedKey":"2005","dateIssuedDisp":"22 August 2005"}],"id":{"doi":["10.1063/1.2007590"],"eki":["1690617330"]},"name":{"displayForm":["Johannes Walcher"]},"note":["Gesehen am 21.02.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1690617330","language":["eng"],"title":[{"title":"Stability of Landau-Ginzburg branes","title_sort":"Stability of Landau-Ginzburg branes"}],"person":[{"family":"Walcher","given":"Johannes","roleDisplay":"VerfasserIn","display":"Walcher, Johannes","role":"aut"}]} | ||
| SRT | |a WALCHERJOHSTABILITYO2220 | ||