Sampling scheme for neuromorphic simulation of entangled quantum systems

Due to the complexity of the space of quantum many-body states, the computation of expectation values by statistical sampling is, in general, a hard task. Neural network representations of such quantum states, which can be physically implemented by neuromorphic hardware, could enable efficient sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Czischek, Stefanie (VerfasserIn) , Pawlowski, Jan M. (VerfasserIn) , Gasenzer, Thomas (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 November 2019
In: Physical review
Year: 2019, Jahrgang: 100, Heft: 19
ISSN:2469-9969
DOI:10.1103/PhysRevB.100.195120
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.100.195120
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.100.195120
Volltext
Verfasserangaben:Stefanie Czischek, Jan M. Pawlowski, Thomas Gasenzer, and Martin Gärttner
Beschreibung
Zusammenfassung:Due to the complexity of the space of quantum many-body states, the computation of expectation values by statistical sampling is, in general, a hard task. Neural network representations of such quantum states, which can be physically implemented by neuromorphic hardware, could enable efficient sampling. A scheme is proposed that leverages this capability to speed up sampling from so-called neural quantum states encoded by a restricted Boltzmann machine. Due to the complex network parameters, a direct hardware implementation is not feasible. We overcome this problem by considering a phase-reweighting scheme for sampling expectation values of observables. Applying our method to a set of paradigmatic entangled quantum states we find that, in general, the phase-reweighted sampling is subject to a form of sign problem, which renders the sampling computationally costly. The use of neuromorphic chips could allow reducing computation times and thereby extend the range of tractable system sizes.
Beschreibung:Gesehen am 11.03.2020
Beschreibung:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.100.195120