CapsNets continuing the convolutional quest

Capsule networks are ideal tools to combine event-level and subjet information at the LHC. After benchmarking our capsule network against standard convolutional networks, we show how multi-class capsules extract a resonance decaying to top quarks from both, QCD di-jet and the top continuum backgroun...

Full description

Saved in:
Bibliographic Details
Main Authors: Diefenbacher, Sascha (Author) , Plehn, Tilman (Author) , Thompson, Jennifer M. (Author)
Format: Article (Journal)
Language:English
Published: 07-02-2020
In: SciPost physics
Year: 2020, Volume: 8, Issue: 2, Pages: 1-22
ISSN:2542-4653
DOI:10.21468/SciPostPhys.8.2.023
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.8.2.023
Get full text
Author Notes:Sascha Diefenbacher, Hermann Frost, Gregor Kasieczka, Tilman Plehn and Jennifer M. Thompson
Description
Summary:Capsule networks are ideal tools to combine event-level and subjet information at the LHC. After benchmarking our capsule network against standard convolutional networks, we show how multi-class capsules extract a resonance decaying to top quarks from both, QCD di-jet and the top continuum backgrounds. We then show how its results can be easily interpreted. Finally, we use associated top-Higgs production to demonstrate that capsule networks can work on overlaying images to go beyond calorimeter information.
Item Description:Gesehen am 11.09.2020
Physical Description:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.8.2.023