CapsNets continuing the convolutional quest

Capsule networks are ideal tools to combine event-level and subjet information at the LHC. After benchmarking our capsule network against standard convolutional networks, we show how multi-class capsules extract a resonance decaying to top quarks from both, QCD di-jet and the top continuum backgroun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diefenbacher, Sascha (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Thompson, Jennifer M. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 07-02-2020
In: SciPost physics
Year: 2020, Jahrgang: 8, Heft: 2, Pages: 1-22
ISSN:2542-4653
DOI:10.21468/SciPostPhys.8.2.023
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.8.2.023
Volltext
Verfasserangaben:Sascha Diefenbacher, Hermann Frost, Gregor Kasieczka, Tilman Plehn and Jennifer M. Thompson
Beschreibung
Zusammenfassung:Capsule networks are ideal tools to combine event-level and subjet information at the LHC. After benchmarking our capsule network against standard convolutional networks, we show how multi-class capsules extract a resonance decaying to top quarks from both, QCD di-jet and the top continuum backgrounds. We then show how its results can be easily interpreted. Finally, we use associated top-Higgs production to demonstrate that capsule networks can work on overlaying images to go beyond calorimeter information.
Beschreibung:Gesehen am 11.09.2020
Beschreibung:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.8.2.023