Murine liver organoids as a genetically flexible system to study liver cancer in vivo and in vitro

The rising incidence of cholangiocarcinoma (CCA) coupled with a low 5-year survival rate that remains below 10% delineates the urgent need for more effective treatment strategies. Although several recent studies provided detailed information on the genetic landscape of this fatal malignancy, versati...

Full description

Saved in:
Bibliographic Details
Main Authors: Saborowski, Anna (Author) , Schirmacher, Peter (Author)
Format: Article (Journal)
Language:English
Published: 05 February 2019
In: Hepatology communications
Year: 2019, Volume: 3, Issue: 3, Pages: 423-436
ISSN:2471-254X
DOI:10.1002/hep4.1312
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/hep4.1312
Verlag, lizenzpflichtig, Volltext: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep4.1312
Get full text
Author Notes:Anna Saborowski, Katharina Wolff, Steffi Spielberg, Benedikt Beer, Björn Hartleben, Zulrahman Erlangga, Diana Becker, Lukas E. Dow, Silke Marhenke, Norman Woller, Kristian Unger, Peter Schirmacher, Michael P. Manns, Jens U. Marquardt, Arndt Vogel, and Michael Saborowski
Description
Summary:The rising incidence of cholangiocarcinoma (CCA) coupled with a low 5-year survival rate that remains below 10% delineates the urgent need for more effective treatment strategies. Although several recent studies provided detailed information on the genetic landscape of this fatal malignancy, versatile model systems to functionally dissect the immediate clinical relevance of the identified genetic alterations are still missing. To enhance our understanding of CCA pathophysiology and facilitate rapid functional annotation of putative CCA driver and tumor maintenance genes, we developed a tractable murine CCA model by combining the cyclization recombination (Cre)-lox system, RNA interference, and clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology with liver organoids, followed by subsequent transplantation into immunocompetent, syngeneic mice. Histologically, resulting tumors displayed cytokeratin 19-positive ductal structures surrounded by a desmoplastic stroma—hallmark features of human CCAs. Despite their initial biliary phenotype in vitro, organoids retained the plasticity to induce a broader differentiation spectrum of primary liver cancers following transplantation into recipient mice, depending on their genetic context. Thus, the organoid system combines the advantage of using nontransformed, premalignant cells to recapitulate liver tumorigenesis as a multistep process, with the advantage of a reproducible and expandable cell culture system that abrogates the need for recurrent isolations of primary cells. Conclusion: Genetically modified liver organoids are able to transform into histologically accurate CCAs. Depending on the oncogenic context, they are also able to give rise to liver cancers that show features of hepatocellular carcinomas. The model can be used to functionally explore candidate cancer genes of primary liver cancers in immunocompetent animals and evaluate novel treatment regimens.
Item Description:Gesehen am 03.07.2020
Physical Description:Online Resource
ISSN:2471-254X
DOI:10.1002/hep4.1312