LedPred: an R/bioconductor package to predict regulatory sequences using support vector machines

Abstract. Summary: Supervised classification based on support vector machines (SVMs) has successfully been used for the prediction of cis-regulatory modules (CRMs)

Saved in:
Bibliographic Details
Main Authors: Seyres, Denis (Author) , Herrmann, Carl (Author)
Format: Article (Journal)
Language:English
Published: 2016
In: Bioinformatics
Year: 2015, Volume: 32, Issue: 7, Pages: 1091-1093
ISSN:1367-4811
DOI:10.1093/bioinformatics/btv705
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/bioinformatics/btv705
Verlag, lizenzpflichtig, Volltext: https://academic.oup.com/bioinformatics/article/32/7/1091/1744134
Get full text
Author Notes:Denis Seyres, Elodie Darbo, Laurent Perrin, Carl Herrmann and Aitor González
Description
Summary:Abstract. Summary: Supervised classification based on support vector machines (SVMs) has successfully been used for the prediction of cis-regulatory modules (CRMs)
Item Description:Advance access publication date: 1 December 2015
Gesehen am 13.05.2020
Physical Description:Online Resource
ISSN:1367-4811
DOI:10.1093/bioinformatics/btv705