Subwavelength-width optical tunnel junctions for ultracold atoms

We propose a method for creating far-field optical barrier potentials for ultracold atoms with widths that are narrower than the diffraction limit and can approach tens of nanometers. The reduced widths stem from the nonlinear atomic response to control fields that create spatially varying dark reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jendrzejewski, Fred (VerfasserIn) , Eckel, S. (VerfasserIn) , Tiecke, T. G. (VerfasserIn) , Juzeliūnas, G. (VerfasserIn) , Campbell, G. K. (VerfasserIn) , Jiang, Liang (VerfasserIn) , Gorshkov, A. V. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 December 2016
In: Physical review
Year: 2016, Jahrgang: 94, Heft: 6
ISSN:2469-9934
DOI:10.1103/PhysRevA.94.063422
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.94.063422
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.94.063422
Volltext
Verfasserangaben:F. Jendrzejewski, S. Eckel, T.G. Tiecke, G. Juzeliūnas, G.K. Campbell, Liang Jiang, and A.V. Gorshkov
Beschreibung
Zusammenfassung:We propose a method for creating far-field optical barrier potentials for ultracold atoms with widths that are narrower than the diffraction limit and can approach tens of nanometers. The reduced widths stem from the nonlinear atomic response to control fields that create spatially varying dark resonances. The subwavelength barrier is the result of the geometric scalar potential experienced by an atom prepared in such a spatially varying dark state. The performance of this technique, as well as its applications to the study of many-body physics and to the implementation of quantum-information protocols with ultracold atoms, are discussed, with a focus on the implementation of tunnel junctions.
Beschreibung:Gesehen am 06.05.2020
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.94.063422