Semiparametric estimation with generated covariates

We study a general class of semiparametric estimators when the infinite-dimensional nuisance parameters include a conditional expectation function that has been estimated nonparametrically using generated covariates. Such estimators are used frequently to e.g., estimate nonlinear models with endogen...

Full description

Saved in:
Bibliographic Details
Main Authors: Mammen, Enno (Author) , Rothe, Christoph (Author) , Schienle, Melanie (Author)
Format: Article (Journal)
Language:English
Published: October 2016
In: Econometric theory
Year: 2016, Volume: 32, Issue: 5, Pages: 1140-1177
ISSN:1469-4360
DOI:http://dx.doi.org/10.1017/S0266466615000134
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/http://dx.doi.org/10.1017/S0266466615000134
Verlag, lizenzpflichtig, Volltext: https://search.proquest.com/docview/1819082988?pq-origsite=gscholar
Get full text
Author Notes:Enno Mammen, Christoph Rothe, Melanie Schienle
Description
Summary:We study a general class of semiparametric estimators when the infinite-dimensional nuisance parameters include a conditional expectation function that has been estimated nonparametrically using generated covariates. Such estimators are used frequently to e.g., estimate nonlinear models with endogenous covariates when identification is achieved using control variable techniques. We study the asymptotic properties of estimators in this class, which is a nonstandard problem due to the presence of generated covariates. We give conditions under which estimators are root-n consistent and asymptotically normal, derive a general formula for the asymptotic variance, and show how to establish validity of the bootstrap.
Item Description:Gesehen am 06.05.2020
Physical Description:Online Resource
ISSN:1469-4360
DOI:http://dx.doi.org/10.1017/S0266466615000134