Solving a nonlinear analytical model for bosonic equilibration

An integrable nonlinear model for the time-dependent equilibration of a bosonic system that has been devised earlier is solved exactly with boundary conditions that are appropriate for a truncated Bose-Einstein distribution, and include the singularity at ε=μ. The buildup of a thermal tail during ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rasch, Niklas (VerfasserIn) , Wolschin, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Physics open
Year: 2019, Jahrgang: 2
ISSN:2666-0326
DOI:10.1016/j.physo.2019.100013
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.physo.2019.100013
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S2666032619300134
Volltext
Verfasserangaben:N. Rasch, G. Wolschin
Beschreibung
Zusammenfassung:An integrable nonlinear model for the time-dependent equilibration of a bosonic system that has been devised earlier is solved exactly with boundary conditions that are appropriate for a truncated Bose-Einstein distribution, and include the singularity at ε=μ. The buildup of a thermal tail during evaporative cooling, as well as the transition to the condensed state are accounted for. To enforce particle-number conservation during the cooling process with an energy-dependent density of states for a three-dimensional thermal cloud, a time-dependent chemical potential is introduced.
Beschreibung:Published online: 18 December 2019
Gesehen am 07.05.2020
Beschreibung:Online Resource
ISSN:2666-0326
DOI:10.1016/j.physo.2019.100013