Mutation of the Na+/K+-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish

The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we decip...

Full description

Saved in:
Bibliographic Details
Main Authors: Pott, Alexander (Author) , Frese, Karen S. (Author)
Format: Article (Journal)
Language:English
Published: 08 May 2018
In: Journal of molecular and cellular cardiology
Year: 2018, Volume: 120, Pages: 42-52
ISSN:1095-8584
DOI:10.1016/j.yjmcc.2018.05.005
Online Access:Verlag, Volltext: https://doi.org/10.1016/j.yjmcc.2018.05.005
Verlag: http://www.sciencedirect.com/science/article/pii/S0022282818301524
Get full text
Author Notes:Alexander Pott, Sarah Bock, Ina M. Berger, Karen Frese, Tillman Dahme, Mirjam Keßler, Susanne Rinné, Niels Decher, Steffen Just, Wolfgang Rottbauer
Description
Summary:The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na+/K+-ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na+/K+-ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na+/K+-ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na+/K+-ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na+/K+-ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization.
Item Description:Im Titel sind die Pluszeichen hochgestellt
Gesehen am 08.05.2020
Physical Description:Online Resource
ISSN:1095-8584
DOI:10.1016/j.yjmcc.2018.05.005