Two-dimensional theta functions and crystallization among Bravais lattices

In this paper, we study minimization problems among Bravais lattices for finite energy per point. We first prove that if a function is completely monotonic, then the triangular lattice minimizes its energy per particle among Bravais lattices for any given density. Second, we give an example of conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bétermin, Laurent (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 September 2016
In: SIAM journal on mathematical analysis
Year: 2016, Jahrgang: 48, Heft: 5, Pages: 3236-3269
ISSN:1095-7154
DOI:10.1137/15M101614X
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/15M101614X
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/15M101614X
Volltext
Verfasserangaben:Laurent Bétermin
Beschreibung
Zusammenfassung:In this paper, we study minimization problems among Bravais lattices for finite energy per point. We first prove that if a function is completely monotonic, then the triangular lattice minimizes its energy per particle among Bravais lattices for any given density. Second, we give an example of convex decreasing positive interacting potential for which the triangular lattice is not a minimizer for a class of densities. We use Montgomery method presented in [L. Bétermin and P. Zhang, Commun. Contemp. Math., 17 (2015), 1450049] to prove the minimality of the triangular lattice among Bravais lattices at high density for a general class of potentials. Finally, we deduce the global minimality among all Bravais lattices, i.e., without a density constraint, of a triangular lattice for some Lennard-Jones-type potentials and attractive-repulsive Yukawa potentials.
Beschreibung:Gesehen am 11.05.2020
Beschreibung:Online Resource
ISSN:1095-7154
DOI:10.1137/15M101614X