Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response

Purpose: Antiangiogenic treatment with bevacizumab, a mAb to the VEGF, is the single most widely used therapeutic agent for patients with recurrent glioblastoma. A major challenge is that there are currently no validated biomarkers that can predict treatment outcome. Here we analyze the potential of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vollmuth, Philipp (VerfasserIn) , Götz, Michael (VerfasserIn) , Muschelli, John (VerfasserIn) , Wick, Antje (VerfasserIn) , Neuberger, Ulf (VerfasserIn) , Shinohara, Russell T. (VerfasserIn) , Sill, Martin (VerfasserIn) , Nowosielski, Martha (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Radbruch, Alexander (VerfasserIn) , Wick, Wolfgang (VerfasserIn) , Bendszus, Martin (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn) , Bonekamp, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [2016]
In: Clinical cancer research
Year: 2016, Jahrgang: 22, Heft: 23, Pages: 5765-5771
ISSN:1557-3265
DOI:10.1158/1078-0432.CCR-16-0702
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1158/1078-0432.CCR-16-0702
Verlag, lizenzpflichtig, Volltext: https://clincancerres.aacrjournals.org/content/22/23/5765
Volltext
Verfasserangaben:Philipp Kickingereder, Michael Götz, John Muschelli, Antje Wick, Ulf Neuberger, Russell T. Shinohara, Martin Sill, Martha Nowosielski, Heinz-Peter Schlemmer, Alexander Radbruch, Wolfgang Wick, Martin Bendszus, Klaus H. Maier-Hein, and David Bonekamp

MARC

LEADER 00000caa a2200000 c 4500
001 1697856527
003 DE-627
005 20220818081611.0
007 cr uuu---uuuuu
008 200511s2016 xx |||||o 00| ||eng c
024 7 |a 10.1158/1078-0432.CCR-16-0702  |2 doi 
035 |a (DE-627)1697856527 
035 |a (DE-599)KXP1697856527 
035 |a (OCoLC)1341319672 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vollmuth, Philipp  |d 1987-  |e VerfasserIn  |0 (DE-588)1043270086  |0 (DE-627)771319177  |0 (DE-576)394600738  |4 aut 
245 1 0 |a Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response  |c Philipp Kickingereder, Michael Götz, John Muschelli, Antje Wick, Ulf Neuberger, Russell T. Shinohara, Martin Sill, Martha Nowosielski, Heinz-Peter Schlemmer, Alexander Radbruch, Wolfgang Wick, Martin Bendszus, Klaus H. Maier-Hein, and David Bonekamp 
264 1 |c [2016] 
300 |b Illustrationen 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online first October 10, 2016 
500 |a Gesehen am 11.05.2020 
520 |a Purpose: Antiangiogenic treatment with bevacizumab, a mAb to the VEGF, is the single most widely used therapeutic agent for patients with recurrent glioblastoma. A major challenge is that there are currently no validated biomarkers that can predict treatment outcome. Here we analyze the potential of radiomics, an emerging field of research that aims to utilize the full potential of medical imaging. - Experimental Design: A total of 4,842 quantitative MRI features were automatically extracted and analyzed from the multiparametric tumor of 172 patients (allocated to a discovery and validation set with a 2:1 ratio) with recurrent glioblastoma prior to bevacizumab treatment. Leveraging a high-throughput approach, radiomic features of patients in the discovery set were subjected to a supervised principal component (superpc) analysis to generate a prediction model for stratifying treatment outcome to antiangiogenic therapy by means of both progression-free and overall survival (PFS and OS). - Results: The superpc predictor stratified patients in the discovery set into a low or high risk group for PFS (HR = 1.60; P = 0.017) and OS (HR = 2.14; P < 0.001) and was successfully validated for patients in the validation set (HR = 1.85, P = 0.030 for PFS; HR = 2.60, P = 0.001 for OS). - Conclusions: Our radiomic-based superpc signature emerges as a putative imaging biomarker for the identification of patients who may derive the most benefit from antiangiogenic therapy, advances the knowledge in the noninvasive characterization of brain tumors, and stresses the role of radiomics as a novel tool for improving decision support in cancer treatment at low cost. Clin Cancer Res; 22(23); 5765-71. ©2016 AACR. 
700 1 |a Götz, Michael  |e VerfasserIn  |0 (DE-588)119554541X  |0 (DE-627)1677564326  |4 aut 
700 1 |a Muschelli, John  |e VerfasserIn  |4 aut 
700 1 |a Wick, Antje  |d 1972-  |e VerfasserIn  |0 (DE-588)122759869  |0 (DE-627)706032101  |0 (DE-576)293409609  |4 aut 
700 1 |a Neuberger, Ulf  |d 1988-  |e VerfasserIn  |0 (DE-588)1138656976  |0 (DE-627)896172066  |0 (DE-576)492637075  |4 aut 
700 1 |a Shinohara, Russell T.  |e VerfasserIn  |4 aut 
700 1 |a Sill, Martin  |d 1982-  |e VerfasserIn  |0 (DE-588)102037330X  |0 (DE-627)691197369  |0 (DE-576)359253377  |4 aut 
700 1 |a Nowosielski, Martha  |e VerfasserIn  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Radbruch, Alexander  |d 1977-  |e VerfasserIn  |0 (DE-588)1022344501  |0 (DE-627)716953951  |0 (DE-576)362851166  |4 aut 
700 1 |a Wick, Wolfgang  |d 1970-  |e VerfasserIn  |0 (DE-588)120297736  |0 (DE-627)080586929  |0 (DE-576)186221320  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
700 1 |a Bonekamp, David  |d 1977-  |e VerfasserIn  |0 (DE-588)128868104  |0 (DE-627)383668581  |0 (DE-576)297371797  |4 aut 
773 0 8 |i Enthalten in  |t Clinical cancer research  |d Philadelphia, Pa. [u.a.] : AACR, 1995  |g 22(2016), 23, Seite 5765-5771  |h Online-Ressource  |w (DE-627)325489971  |w (DE-600)2036787-9  |w (DE-576)094502234  |x 1557-3265  |7 nnas  |a Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response 
773 1 8 |g volume:22  |g year:2016  |g number:23  |g pages:5765-5771  |g extent:7  |a Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response 
856 4 0 |u https://doi.org/10.1158/1078-0432.CCR-16-0702  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://clincancerres.aacrjournals.org/content/22/23/5765  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200511 
993 |a Article 
994 |a 2016 
998 |g 128868104  |a Bonekamp, David  |m 128868104:Bonekamp, David  |d 50000  |e 50000PB128868104  |k 0/50000/  |p 14  |y j 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 50000  |e 50000PM1100551875  |k 0/50000/  |p 13 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 12 
998 |g 1022344501  |a Radbruch, Alexander  |m 1022344501:Radbruch, Alexander  |d 910000  |d 911100  |e 910000PR1022344501  |e 911100PR1022344501  |k 0/910000/  |k 1/910000/911100/  |p 11 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 10 
998 |g 102037330X  |a Sill, Martin  |m 102037330X:Sill, Martin  |d 50000  |e 50000PS102037330X  |k 0/50000/  |p 8 
998 |g 1138656976  |a Neuberger, Ulf  |m 1138656976:Neuberger, Ulf  |d 910000  |d 911100  |e 910000PN1138656976  |e 911100PN1138656976  |k 0/910000/  |k 1/910000/911100/  |p 6 
998 |g 122759869  |a Wick, Antje  |m 122759869:Wick, Antje  |d 910000  |d 911100  |e 910000PW122759869  |e 911100PW122759869  |k 0/910000/  |k 1/910000/911100/  |p 4 
998 |g 1043270086  |a Vollmuth, Philipp  |m 1043270086:Vollmuth, Philipp  |d 910000  |d 911100  |e 910000PV1043270086  |e 911100PV1043270086  |k 0/910000/  |k 1/910000/911100/  |p 1  |x j 
999 |a KXP-PPN1697856527  |e 3664679725 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"7 S."}],"id":{"doi":["10.1158/1078-0432.CCR-16-0702"],"eki":["1697856527"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online first October 10, 2016","Gesehen am 11.05.2020"],"relHost":[{"title":[{"title_sort":"Clinical cancer research","title":"Clinical cancer research"}],"corporate":[{"display":"American Association for Cancer Research","role":"isb"}],"name":{"displayForm":["American Association for Cancer Research"]},"origin":[{"publisherPlace":"Philadelphia, Pa. [u.a.]","dateIssuedKey":"1995","dateIssuedDisp":"1995-","publisher":"AACR"}],"note":["Gesehen am 08.06.2023","Fortsetzung der Druck-Ausgabe"],"part":{"pages":"5765-5771","year":"2016","volume":"22","text":"22(2016), 23, Seite 5765-5771","issue":"23","extent":"7"},"id":{"issn":["1557-3265"],"zdb":["2036787-9"],"eki":["325489971"]},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"recId":"325489971","disp":"Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment responseClinical cancer research","type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.1995 -"]}],"person":[{"display":"Vollmuth, Philipp","given":"Philipp","family":"Vollmuth","role":"aut"},{"given":"Michael","display":"Götz, Michael","family":"Götz","role":"aut"},{"display":"Muschelli, John","given":"John","family":"Muschelli","role":"aut"},{"display":"Wick, Antje","given":"Antje","family":"Wick","role":"aut"},{"role":"aut","display":"Neuberger, Ulf","given":"Ulf","family":"Neuberger"},{"role":"aut","given":"Russell T.","display":"Shinohara, Russell T.","family":"Shinohara"},{"family":"Sill","display":"Sill, Martin","given":"Martin","role":"aut"},{"family":"Nowosielski","display":"Nowosielski, Martha","given":"Martha","role":"aut"},{"given":"Heinz-Peter","display":"Schlemmer, Heinz-Peter","family":"Schlemmer","role":"aut"},{"role":"aut","display":"Radbruch, Alexander","given":"Alexander","family":"Radbruch"},{"role":"aut","family":"Wick","given":"Wolfgang","display":"Wick, Wolfgang"},{"display":"Bendszus, Martin","given":"Martin","family":"Bendszus","role":"aut"},{"role":"aut","given":"Klaus H.","display":"Maier-Hein, Klaus H.","family":"Maier-Hein"},{"role":"aut","given":"David","display":"Bonekamp, David","family":"Bonekamp"}],"name":{"displayForm":["Philipp Kickingereder, Michael Götz, John Muschelli, Antje Wick, Ulf Neuberger, Russell T. Shinohara, Martin Sill, Martha Nowosielski, Heinz-Peter Schlemmer, Alexander Radbruch, Wolfgang Wick, Martin Bendszus, Klaus H. Maier-Hein, and David Bonekamp"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"[2016]"}],"recId":"1697856527","title":[{"title_sort":"Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response","title":"Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response"}],"language":["eng"]} 
SRT |a VOLLMUTHPHLARGESCALE2016