Buffer-gas cooling of a single ion in a multipole radio frequency trap beyond the critical mass ratio

We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion’s energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by usi...

Full description

Saved in:
Bibliographic Details
Main Authors: Höltkemeier, Bastian (Author) , Weckesser, Pascal (Author) , López-Carrera, Henry (Author) , Weidemüller, Matthias (Author)
Format: Article (Journal)
Language:English
Published: 9 June 2016
In: Physical review letters
Year: 2016, Volume: 116, Issue: 23
ISSN:1079-7114
DOI:10.1103/PhysRevLett.116.233003
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevLett.116.233003
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevLett.116.233003
Get full text
Author Notes:Bastian Höltkemeier, Pascal Weckesser, Henry López-Carrera, Matthias Weidemüller
Description
Summary:We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion’s energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination with a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer-gas atoms, the ion’s energy distribution is numerically determined for arbitrary buffer-gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion’s equilibrium energy distribution are found. Final ion temperatures down to the millikelvin regime can be achieved by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling).
Item Description:Gesehen am 20.05.2020
Physical Description:Online Resource
ISSN:1079-7114
DOI:10.1103/PhysRevLett.116.233003