Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness...

Full description

Saved in:
Bibliographic Details
Main Authors: Hoyer, Patrick (Author) , Medeiros, Gustavo Quintas Glasner de (Author) , Balázs, Bálint (Author) , Norlin, Nils (Author) , Besir, Christina (Author) , Hanne, Janina (Author) , Kräusslich, Hans-Georg (Author) , Engelhardt, Johann (Author) , Sahl, Steffen Joachim (Author) , Hell, Stefan (Author) , Hufnagel, Lars (Author)
Format: Article (Journal)
Language:English
Published: March 16, 2016
In: Proceedings of the National Academy of Sciences of the United States of America
Year: 2016, Volume: 113, Issue: 13, Pages: 3442-3446
ISSN:1091-6490
DOI:10.1073/pnas.1522292113
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1073/pnas.1522292113
Verlag, lizenzpflichtig, Volltext: https://www.pnas.org/content/113/13/3442
Get full text
Author Notes:Patrick Hoyer, Gustavo de Medeiros, Bálint Balázs, Nils Norlin, Christina Besir, Janina Hanne, Hans-Georg Kräusslich, Johann Engelhardt, Steffen J. Sahl, Stefan W. Hell, Lars Hufnagel
Description
Summary:We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.
Item Description:Gesehen am 20.05.2020
Physical Description:Online Resource
ISSN:1091-6490
DOI:10.1073/pnas.1522292113