The Hitchin fibration under degenerations to noded Riemann surfaces

In this note we study some analytic properties of the linearized self-duality equations on a family of smooth Riemann surfaces $$\Sigma _R$$ΣRconverging for $$R\searrow 0$$R↘0to a surface $$\Sigma _0$$Σ0with a finite number of nodes. It is shown that the linearization along the fibres of the Hitchin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Swoboda, Jan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 September 2016
In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Year: 2016, Jahrgang: 86, Heft: 2, Pages: 189-201
ISSN:1865-8784
DOI:10.1007/s12188-016-0132-7
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s12188-016-0132-7
Volltext
Verfasserangaben:Jan Swoboda
Beschreibung
Zusammenfassung:In this note we study some analytic properties of the linearized self-duality equations on a family of smooth Riemann surfaces $$\Sigma _R$$ΣRconverging for $$R\searrow 0$$R↘0to a surface $$\Sigma _0$$Σ0with a finite number of nodes. It is shown that the linearization along the fibres of the Hitchin fibration $$\mathcal M_d\rightarrow \Sigma _R$$Md→ΣRgives rise to a graph-continuous Fredholm family, the index of it being stable when passing to the limit. We also report on similarities and differences between properties of the Hitchin fibration in this degeneration and in the limit of large Higgs fields as studied in Mazzeo et al. (Duke Math. J. 165(12):2227-2271, 2016).
Beschreibung:Gesehen am 26.05.2020
Beschreibung:Online Resource
ISSN:1865-8784
DOI:10.1007/s12188-016-0132-7