The Hitchin fibration under degenerations to noded Riemann surfaces
In this note we study some analytic properties of the linearized self-duality equations on a family of smooth Riemann surfaces $$\Sigma _R$$ΣRconverging for $$R\searrow 0$$R↘0to a surface $$\Sigma _0$$Σ0with a finite number of nodes. It is shown that the linearization along the fibres of the Hitchin...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
20 September 2016
|
| In: |
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Year: 2016, Jahrgang: 86, Heft: 2, Pages: 189-201 |
| ISSN: | 1865-8784 |
| DOI: | 10.1007/s12188-016-0132-7 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s12188-016-0132-7 |
| Verfasserangaben: | Jan Swoboda |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 169883070X | ||
| 003 | DE-627 | ||
| 005 | 20220818100435.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200526s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s12188-016-0132-7 |2 doi | |
| 035 | |a (DE-627)169883070X | ||
| 035 | |a (DE-599)KXP169883070X | ||
| 035 | |a (OCoLC)1341326557 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Swoboda, Jan |d 1979- |e VerfasserIn |0 (DE-588)1206608919 |0 (DE-627)1692702947 |4 aut | |
| 245 | 1 | 4 | |a The Hitchin fibration under degenerations to noded Riemann surfaces |c Jan Swoboda |
| 264 | 1 | |c 20 September 2016 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 26.05.2020 | ||
| 520 | |a In this note we study some analytic properties of the linearized self-duality equations on a family of smooth Riemann surfaces $$\Sigma _R$$ΣRconverging for $$R\searrow 0$$R↘0to a surface $$\Sigma _0$$Σ0with a finite number of nodes. It is shown that the linearization along the fibres of the Hitchin fibration $$\mathcal M_d\rightarrow \Sigma _R$$Md→ΣRgives rise to a graph-continuous Fredholm family, the index of it being stable when passing to the limit. We also report on similarities and differences between properties of the Hitchin fibration in this degeneration and in the limit of large Higgs fields as studied in Mazzeo et al. (Duke Math. J. 165(12):2227-2271, 2016). | ||
| 773 | 0 | 8 | |i Enthalten in |a Universität Hamburg. Mathematisches Seminar |t Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg |d Berlin [u.a.] : Springer, 1922 |g 86(2016), 2, Seite 189-201 |h Online-Ressource |w (DE-627)327579781 |w (DE-600)2044664-0 |w (DE-576)283118318 |x 1865-8784 |7 nnas |
| 773 | 1 | 8 | |g volume:86 |g year:2016 |g number:2 |g pages:189-201 |g extent:13 |a The Hitchin fibration under degenerations to noded Riemann surfaces |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s12188-016-0132-7 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200526 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1206608919 |a Swoboda, Jan |m 1206608919:Swoboda, Jan |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PS1206608919 |e 110100PS1206608919 |e 110000PS1206608919 |e 110400PS1206608919 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN169883070X |e 3671288272 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Hitchin fibration under degenerations to noded Riemann surfaces","title":"The Hitchin fibration under degenerations to noded Riemann surfaces"}],"person":[{"given":"Jan","family":"Swoboda","role":"aut","roleDisplay":"VerfasserIn","display":"Swoboda, Jan"}],"note":["Gesehen am 26.05.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"169883070X","origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"20 September 2016"}],"id":{"doi":["10.1007/s12188-016-0132-7"],"eki":["169883070X"]},"name":{"displayForm":["Jan Swoboda"]},"physDesc":[{"extent":"13 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1865-8784"],"zdb":["2044664-0"],"eki":["327579781"]},"origin":[{"publisherPlace":"Berlin [u.a.] ; Hamburg","dateIssuedDisp":"1922-","dateIssuedKey":"1922","publisher":"Springer ; Math.Seminar"}],"part":{"year":"2016","pages":"189-201","issue":"2","text":"86(2016), 2, Seite 189-201","volume":"86","extent":"13"},"pubHistory":["1.1922 -"],"recId":"327579781","language":["ger"],"corporate":[{"roleDisplay":"VerfasserIn","display":"Universität Hamburg","role":"aut"}],"disp":"Universität Hamburg. Mathematisches SeminarAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg","note":["Gesehen am 25.04.13"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","title_sort":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg"}]}]} | ||
| SRT | |a SWOBODAJANHITCHINFIB2020 | ||