Universal three-body recombination and Efimov resonances in an ultracold Li-Cs mixture

We study Efimov resonances via three-body loss in an ultracold two-component gas of fermionic 6Li and bosonic 133Cs atoms close to a Feshbach resonance at 843 G, extending results reported previously [Pires et al., Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120 nK. The experimental...

Full description

Saved in:
Bibliographic Details
Main Authors: Ulmanis, Juris (Author) , Häfner, Stephan (Author) , Pires, Rico (Author) , Werner, F. (Author) , Petrov, D. S. (Author) , Kuhnle, Eva (Author) , Weidemüller, Matthias (Author)
Format: Article (Journal)
Language:English
Published: 16 February 2016
In: Physical review
Year: 2016, Volume: 93, Issue: 2
ISSN:2469-9934
DOI:10.1103/PhysRevA.93.022707
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.93.022707
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.93.022707
Get full text
Author Notes:J. Ulmanis, S. Häfner, R. Pires, F. Werner, D.S. Petrov, E.D. Kuhnle, and M. Weidemüller
Description
Summary:We study Efimov resonances via three-body loss in an ultracold two-component gas of fermionic 6Li and bosonic 133Cs atoms close to a Feshbach resonance at 843 G, extending results reported previously [Pires et al., Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120 nK. The experimental scheme for reaching lower temperatures is based upon compensating the gravity-induced spatial separation of the mass-imbalanced gases with bichromatic optical dipole traps. We observe the first and second excited Li-Cs-Cs Efimov resonance in the magnetic field dependence of the three-body event rate constant, in good agreement with the universal zero-range theory at finite temperature [Petrov and Werner, Phys. Rev. A 92, 022704 (2015)]. Deviations are found for the Efimov ground state, and the inelasticity parameter η is found to be significantly larger than those for single-species systems.
Item Description:Gesehen am 29.05.2020
Physical Description:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.93.022707