Generalizations of p-Laplace operator for image enhancement: Part 2

<p style='text-indent:20px;'>We have in a previous study introduced a novel elliptic operator <inline-formula><tex-math id="M2">\begin{document}$ \Delta_{(p, q)} u = |\nabla u|^q\Delta_1 u +(p-1)|\nabla u|^{p-2} \Delta_{\infty} u $\end{document}</tex-math>...

Full description

Saved in:
Bibliographic Details
Main Authors: Baravdish, George (Author) , Cheng, Yuanji (Author) , Svensson, Olof (Author) , Åström, Freddie (Author)
Format: Article (Journal)
Language:English
Published: July 2020
In: Communications on pure and applied analysis
Year: 2020, Volume: 19, Issue: 7, Pages: 3477-3500
ISSN:1553-5258
DOI:10.3934/cpaa.2020152
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/cpaa.2020152
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/cpaa.2020152
Get full text
Author Notes:George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström
Description
Summary:<p style='text-indent:20px;'>We have in a previous study introduced a novel elliptic operator <inline-formula><tex-math id="M2">\begin{document}$ \Delta_{(p, q)} u = |\nabla u|^q\Delta_1 u +(p-1)|\nabla u|^{p-2} \Delta_{\infty} u $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ p \ge 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ q\ge 0, $\end{document}</tex-math></inline-formula> as a generalization of the <inline-formula><tex-math id="M5">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplace operator. In this paper, we establish the well-posedness of the parabolic equation <inline-formula><tex-math id="M6">\begin{document}$ u_{t} = |\nabla u|^{1-q}\Delta_{(1+q, q)}, $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M7">\begin{document}$ q = q(|\nabla u|) $\end{document}</tex-math></inline-formula> is continuous and has range in <inline-formula><tex-math id="M8">\begin{document}$ [0, 1], $\end{document}</tex-math></inline-formula> in the framework of viscosity solutions. We prove the consistency and convergence of the numerical scheme of finite differences of this parabolic equation. Numerical simulations shows the advantage of this operator applied to image enhancement.</p>
Item Description:Gesehen am 02.06.2020
Physical Description:Online Resource
ISSN:1553-5258
DOI:10.3934/cpaa.2020152