Generalizations of p-Laplace operator for image enhancement: Part 2
<p style='text-indent:20px;'>We have in a previous study introduced a novel elliptic operator <inline-formula><tex-math id="M2">\begin{document}$ \Delta_{(p, q)} u = |\nabla u|^q\Delta_1 u +(p-1)|\nabla u|^{p-2} \Delta_{\infty} u $\end{document}</tex-math>...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
July 2020
|
| In: |
Communications on pure and applied analysis
Year: 2020, Volume: 19, Issue: 7, Pages: 3477-3500 |
| ISSN: | 1553-5258 |
| DOI: | 10.3934/cpaa.2020152 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/cpaa.2020152 Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/cpaa.2020152 |
| Author Notes: | George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1699151539 | ||
| 003 | DE-627 | ||
| 005 | 20220818104353.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200602s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3934/cpaa.2020152 |2 doi | |
| 035 | |a (DE-627)1699151539 | ||
| 035 | |a (DE-599)KXP1699151539 | ||
| 035 | |a (OCoLC)1341326905 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Baravdish, George |e VerfasserIn |0 (DE-588)1164825100 |0 (DE-627)1029636397 |0 (DE-576)51016711X |4 aut | |
| 245 | 1 | 0 | |a Generalizations of p-Laplace operator for image enhancement |b Part 2 |c George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström |
| 246 | 3 | 3 | |a Generalizations of p [Rho]-Laplace operator for image enhancement |
| 264 | 1 | |c July 2020 | |
| 300 | |a 23 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 02.06.2020 | ||
| 520 | |a <p style='text-indent:20px;'>We have in a previous study introduced a novel elliptic operator <inline-formula><tex-math id="M2">\begin{document}$ \Delta_{(p, q)} u = |\nabla u|^q\Delta_1 u +(p-1)|\nabla u|^{p-2} \Delta_{\infty} u $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ p \ge 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ q\ge 0, $\end{document}</tex-math></inline-formula> as a generalization of the <inline-formula><tex-math id="M5">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplace operator. In this paper, we establish the well-posedness of the parabolic equation <inline-formula><tex-math id="M6">\begin{document}$ u_{t} = |\nabla u|^{1-q}\Delta_{(1+q, q)}, $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M7">\begin{document}$ q = q(|\nabla u|) $\end{document}</tex-math></inline-formula> is continuous and has range in <inline-formula><tex-math id="M8">\begin{document}$ [0, 1], $\end{document}</tex-math></inline-formula> in the framework of viscosity solutions. We prove the consistency and convergence of the numerical scheme of finite differences of this parabolic equation. Numerical simulations shows the advantage of this operator applied to image enhancement.</p> | ||
| 700 | 1 | |a Cheng, Yuanji |e VerfasserIn |4 aut | |
| 700 | 1 | |a Svensson, Olof |e VerfasserIn |4 aut | |
| 700 | 1 | |a Åström, Freddie |e VerfasserIn |0 (DE-588)1153903539 |0 (DE-627)1015504132 |0 (DE-576)500624267 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Communications on pure and applied analysis |d Springfield, Mo. : AIMS, 2002 |g 19(2020), 7, Seite 3477-3500 |h Online-Ressource |w (DE-627)392459671 |w (DE-600)2157695-6 |w (DE-576)275999327 |x 1553-5258 |7 nnas |a Generalizations of p-Laplace operator for image enhancement Part 2 |
| 773 | 1 | 8 | |g volume:19 |g year:2020 |g number:7 |g pages:3477-3500 |g extent:23 |a Generalizations of p-Laplace operator for image enhancement Part 2 |
| 856 | 4 | 0 | |u https://doi.org/10.3934/cpaa.2020152 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.aimsciences.org/article/doi/10.3934/cpaa.2020152 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200602 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1153903539 |a Åström, Freddie |m 1153903539:Åström, Freddie |p 4 |y j | ||
| 999 | |a KXP-PPN1699151539 |e 3681337764 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1699151539","note":["Gesehen am 02.06.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"titleAlt":[{"title":"Generalizations of p [Rho]-Laplace operator for image enhancement"}],"person":[{"family":"Baravdish","given":"George","roleDisplay":"VerfasserIn","display":"Baravdish, George","role":"aut"},{"display":"Cheng, Yuanji","roleDisplay":"VerfasserIn","role":"aut","family":"Cheng","given":"Yuanji"},{"family":"Svensson","given":"Olof","display":"Svensson, Olof","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Åström, Freddie","roleDisplay":"VerfasserIn","given":"Freddie","family":"Åström"}],"title":[{"subtitle":"Part 2","title":"Generalizations of p-Laplace operator for image enhancement","title_sort":"Generalizations of p-Laplace operator for image enhancement"}],"relHost":[{"disp":"Generalizations of p-Laplace operator for image enhancement Part 2Communications on pure and applied analysis","note":["Gesehen am 01.07.2024","Fortsetzung der Druck-Ausgabe"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"392459671","pubHistory":["1.2002 -"],"part":{"year":"2020","issue":"7","pages":"3477-3500","text":"19(2020), 7, Seite 3477-3500","volume":"19","extent":"23"},"titleAlt":[{"title":"CPAA"}],"title":[{"title":"Communications on pure and applied analysis","subtitle":"CPAA","title_sort":"Communications on pure and applied analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Institute of Mathematical Sciences"]},"origin":[{"publisherPlace":"Springfield, Mo.","dateIssuedDisp":"2002-","publisher":"AIMS","dateIssuedKey":"2002"}],"id":{"issn":["1553-5258"],"zdb":["2157695-6"],"eki":["392459671"]}}],"physDesc":[{"extent":"23 S."}],"name":{"displayForm":["George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström"]},"id":{"doi":["10.3934/cpaa.2020152"],"eki":["1699151539"]},"origin":[{"dateIssuedDisp":"July 2020","dateIssuedKey":"2020"}]} | ||
| SRT | |a BARAVDISHGGENERALIZA2020 | ||