Generalizations of p-Laplace operator for image enhancement: Part 2

<p style='text-indent:20px;'>We have in a previous study introduced a novel elliptic operator <inline-formula><tex-math id="M2">\begin{document}$ \Delta_{(p, q)} u = |\nabla u|^q\Delta_1 u +(p-1)|\nabla u|^{p-2} \Delta_{\infty} u $\end{document}</tex-math>...

Full description

Saved in:
Bibliographic Details
Main Authors: Baravdish, George (Author) , Cheng, Yuanji (Author) , Svensson, Olof (Author) , Åström, Freddie (Author)
Format: Article (Journal)
Language:English
Published: July 2020
In: Communications on pure and applied analysis
Year: 2020, Volume: 19, Issue: 7, Pages: 3477-3500
ISSN:1553-5258
DOI:10.3934/cpaa.2020152
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/cpaa.2020152
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/cpaa.2020152
Get full text
Author Notes:George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström

MARC

LEADER 00000caa a2200000 c 4500
001 1699151539
003 DE-627
005 20220818104353.0
007 cr uuu---uuuuu
008 200602s2020 xx |||||o 00| ||eng c
024 7 |a 10.3934/cpaa.2020152  |2 doi 
035 |a (DE-627)1699151539 
035 |a (DE-599)KXP1699151539 
035 |a (OCoLC)1341326905 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Baravdish, George  |e VerfasserIn  |0 (DE-588)1164825100  |0 (DE-627)1029636397  |0 (DE-576)51016711X  |4 aut 
245 1 0 |a Generalizations of p-Laplace operator for image enhancement  |b Part 2  |c George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström 
246 3 3 |a Generalizations of p [Rho]-Laplace operator for image enhancement 
264 1 |c July 2020 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.06.2020 
520 |a <p style='text-indent:20px;'>We have in a previous study introduced a novel elliptic operator <inline-formula><tex-math id="M2">\begin{document}$ \Delta_{(p, q)} u = |\nabla u|^q\Delta_1 u +(p-1)|\nabla u|^{p-2} \Delta_{\infty} u $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ p \ge 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ q\ge 0, $\end{document}</tex-math></inline-formula> as a generalization of the <inline-formula><tex-math id="M5">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplace operator. In this paper, we establish the well-posedness of the parabolic equation <inline-formula><tex-math id="M6">\begin{document}$ u_{t} = |\nabla u|^{1-q}\Delta_{(1+q, q)}, $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M7">\begin{document}$ q = q(|\nabla u|) $\end{document}</tex-math></inline-formula> is continuous and has range in <inline-formula><tex-math id="M8">\begin{document}$ [0, 1], $\end{document}</tex-math></inline-formula> in the framework of viscosity solutions. We prove the consistency and convergence of the numerical scheme of finite differences of this parabolic equation. Numerical simulations shows the advantage of this operator applied to image enhancement.</p> 
700 1 |a Cheng, Yuanji  |e VerfasserIn  |4 aut 
700 1 |a Svensson, Olof  |e VerfasserIn  |4 aut 
700 1 |a Åström, Freddie  |e VerfasserIn  |0 (DE-588)1153903539  |0 (DE-627)1015504132  |0 (DE-576)500624267  |4 aut 
773 0 8 |i Enthalten in  |t Communications on pure and applied analysis  |d Springfield, Mo. : AIMS, 2002  |g 19(2020), 7, Seite 3477-3500  |h Online-Ressource  |w (DE-627)392459671  |w (DE-600)2157695-6  |w (DE-576)275999327  |x 1553-5258  |7 nnas  |a Generalizations of p-Laplace operator for image enhancement Part 2 
773 1 8 |g volume:19  |g year:2020  |g number:7  |g pages:3477-3500  |g extent:23  |a Generalizations of p-Laplace operator for image enhancement Part 2 
856 4 0 |u https://doi.org/10.3934/cpaa.2020152  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.aimsciences.org/article/doi/10.3934/cpaa.2020152  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200602 
993 |a Article 
994 |a 2020 
998 |g 1153903539  |a Åström, Freddie  |m 1153903539:Åström, Freddie  |p 4  |y j 
999 |a KXP-PPN1699151539  |e 3681337764 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1699151539","note":["Gesehen am 02.06.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"titleAlt":[{"title":"Generalizations of p [Rho]-Laplace operator for image enhancement"}],"person":[{"family":"Baravdish","given":"George","roleDisplay":"VerfasserIn","display":"Baravdish, George","role":"aut"},{"display":"Cheng, Yuanji","roleDisplay":"VerfasserIn","role":"aut","family":"Cheng","given":"Yuanji"},{"family":"Svensson","given":"Olof","display":"Svensson, Olof","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Åström, Freddie","roleDisplay":"VerfasserIn","given":"Freddie","family":"Åström"}],"title":[{"subtitle":"Part 2","title":"Generalizations of p-Laplace operator for image enhancement","title_sort":"Generalizations of p-Laplace operator for image enhancement"}],"relHost":[{"disp":"Generalizations of p-Laplace operator for image enhancement Part 2Communications on pure and applied analysis","note":["Gesehen am 01.07.2024","Fortsetzung der Druck-Ausgabe"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"392459671","pubHistory":["1.2002 -"],"part":{"year":"2020","issue":"7","pages":"3477-3500","text":"19(2020), 7, Seite 3477-3500","volume":"19","extent":"23"},"titleAlt":[{"title":"CPAA"}],"title":[{"title":"Communications on pure and applied analysis","subtitle":"CPAA","title_sort":"Communications on pure and applied analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Institute of Mathematical Sciences"]},"origin":[{"publisherPlace":"Springfield, Mo.","dateIssuedDisp":"2002-","publisher":"AIMS","dateIssuedKey":"2002"}],"id":{"issn":["1553-5258"],"zdb":["2157695-6"],"eki":["392459671"]}}],"physDesc":[{"extent":"23 S."}],"name":{"displayForm":["George Baravdish, Yuanji Cheng, Olof Svensson, and Freddie Åström"]},"id":{"doi":["10.3934/cpaa.2020152"],"eki":["1699151539"]},"origin":[{"dateIssuedDisp":"July 2020","dateIssuedKey":"2020"}]} 
SRT |a BARAVDISHGGENERALIZA2020