A simple 2nd order lower bound to the energy of dilute bose gases
For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound $$e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)$$e(ρ)≥4πaρ2(1-Cρa3).
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
12 March 2020
|
| In: |
Communications in mathematical physics
Year: 2020, Volume: 376, Issue: 1, Pages: 323-351 |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-020-03715-2 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-020-03715-2 |
| Author Notes: | Birger Brietzke, Søren Fournais, Jan Philip Solovej |
| Summary: | For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound $$e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)$$e(ρ)≥4πaρ2(1-Cρa3). |
|---|---|
| Item Description: | Gesehen am 08.06.2020 |
| Physical Description: | Online Resource |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-020-03715-2 |