A simple 2nd order lower bound to the energy of dilute bose gases

For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound $$e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)$$e(ρ)≥4πaρ2(1-Cρa3).

Saved in:
Bibliographic Details
Main Authors: Brietzke, Birger (Author) , Fournais, Søren (Author) , Solovej, Jan Philip (Author)
Format: Article (Journal)
Language:English
Published: 12 March 2020
In: Communications in mathematical physics
Year: 2020, Volume: 376, Issue: 1, Pages: 323-351
ISSN:1432-0916
DOI:10.1007/s00220-020-03715-2
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-020-03715-2
Get full text
Author Notes:Birger Brietzke, Søren Fournais, Jan Philip Solovej
Description
Summary:For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound $$e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)$$e(ρ)≥4πaρ2(1-Cρa3).
Item Description:Gesehen am 08.06.2020
Physical Description:Online Resource
ISSN:1432-0916
DOI:10.1007/s00220-020-03715-2