A simple 2nd order lower bound to the energy of dilute bose gases
For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound $$e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)$$e(ρ)≥4πaρ2(1-Cρa3).
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
12 March 2020
|
| In: |
Communications in mathematical physics
Year: 2020, Jahrgang: 376, Heft: 1, Pages: 323-351 |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-020-03715-2 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-020-03715-2 |
| Verfasserangaben: | Birger Brietzke, Søren Fournais, Jan Philip Solovej |
| Zusammenfassung: | For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound $$e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)$$e(ρ)≥4πaρ2(1-Cρa3). |
|---|---|
| Beschreibung: | Gesehen am 08.06.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-020-03715-2 |