An active-set method for quadratic programming based on sequential hot-starts

A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Johnson, Travis C. (Author) , Kirches, Christian (Author) , Wächter, Andreas (Author)
Format: Article (Journal)
Language:English
Published: May 7, 2015
In: SIAM journal on optimization
Year: 2015, Volume: 25, Issue: 2, Pages: 967-994
ISSN:1095-7189
DOI:10.1137/130940384
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/130940384
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/130940384
Get full text
Author Notes:Travis C. Johnson, Christian Kirches, and Andreas Wächter
Description
Summary:A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full constraint and Hessian matrices for all but the first problem in the sequence. The proposed algorithm can be seen as an extension of the iterative refinement procedure for linear systems to QP problems, coupled with the application of an accelerated linear solver method that employs hot-started QP solves as a preconditioner. Local convergence results are presented. The practical performance of the proposed method is demonstrated on a sequence of QPs arising in nonlinear model predictive control and during the solution of a set of randomly generated nonlinear optimization problems using sequential quadratic programming. In these experiments, the method proves to be fairly reliable, despite the lack of global convergence guarantees. The results also show a significant reduction in the computation time for large problems with dense constraint matrices, as well as in the number of matrix-vector products.
Item Description:Gesehen am 09.06.2020
Physical Description:Online Resource
ISSN:1095-7189
DOI:10.1137/130940384