An active-set method for quadratic programming based on sequential hot-starts

A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Johnson, Travis C. (Author) , Kirches, Christian (Author) , Wächter, Andreas (Author)
Format: Article (Journal)
Language:English
Published: May 7, 2015
In: SIAM journal on optimization
Year: 2015, Volume: 25, Issue: 2, Pages: 967-994
ISSN:1095-7189
DOI:10.1137/130940384
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/130940384
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/130940384
Get full text
Author Notes:Travis C. Johnson, Christian Kirches, and Andreas Wächter

MARC

LEADER 00000caa a2200000 c 4500
001 1700251023
003 DE-627
005 20220818115334.0
007 cr uuu---uuuuu
008 200609s2015 xx |||||o 00| ||eng c
024 7 |a 10.1137/130940384  |2 doi 
035 |a (DE-627)1700251023 
035 |a (DE-599)KXP1700251023 
035 |a (OCoLC)1341339063 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Johnson, Travis C.  |e VerfasserIn  |0 (DE-588)1211651401  |0 (DE-627)1700253042  |4 aut 
245 1 3 |a An active-set method for quadratic programming based on sequential hot-starts  |c Travis C. Johnson, Christian Kirches, and Andreas Wächter 
264 1 |c May 7, 2015 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.06.2020 
520 |a A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full constraint and Hessian matrices for all but the first problem in the sequence. The proposed algorithm can be seen as an extension of the iterative refinement procedure for linear systems to QP problems, coupled with the application of an accelerated linear solver method that employs hot-started QP solves as a preconditioner. Local convergence results are presented. The practical performance of the proposed method is demonstrated on a sequence of QPs arising in nonlinear model predictive control and during the solution of a set of randomly generated nonlinear optimization problems using sequential quadratic programming. In these experiments, the method proves to be fairly reliable, despite the lack of global convergence guarantees. The results also show a significant reduction in the computation time for large problems with dense constraint matrices, as well as in the number of matrix-vector products. 
700 1 |a Kirches, Christian  |e VerfasserIn  |0 (DE-588)143917161  |0 (DE-627)655909893  |0 (DE-576)339678429  |4 aut 
700 1 |a Wächter, Andreas  |e VerfasserIn  |0 (DE-588)1211651770  |0 (DE-627)1700254022  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on optimization  |d Philadelphia, Pa. : SIAM, 1991  |g 25(2015), 2, Seite 967-994  |h Online-Ressource  |w (DE-627)266885497  |w (DE-600)1468414-7  |w (DE-576)078590000  |x 1095-7189  |7 nnas 
773 1 8 |g volume:25  |g year:2015  |g number:2  |g pages:967-994  |g extent:28  |a An active-set method for quadratic programming based on sequential hot-starts 
856 4 0 |u https://doi.org/10.1137/130940384  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/130940384  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200609 
993 |a Article 
994 |a 2015 
998 |g 143917161  |a Kirches, Christian  |m 143917161:Kirches, Christian  |d 700000  |d 708000  |e 700000PK143917161  |e 708000PK143917161  |k 0/700000/  |k 1/700000/708000/  |p 2 
999 |a KXP-PPN1700251023  |e 3684728292 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1137/130940384"],"eki":["1700251023"]},"origin":[{"dateIssuedDisp":"May 7, 2015","dateIssuedKey":"2015"}],"name":{"displayForm":["Travis C. Johnson, Christian Kirches, and Andreas Wächter"]},"relHost":[{"pubHistory":["1.1991 -"],"part":{"text":"25(2015), 2, Seite 967-994","volume":"25","extent":"28","year":"2015","pages":"967-994","issue":"2"},"titleAlt":[{"title":"Journal on optimization"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on optimization","note":["Gesehen am 02.07.2021"],"language":["eng"],"corporate":[{"roleDisplay":"VerfasserIn","display":"Society for Industrial and Applied Mathematics","role":"aut"}],"recId":"266885497","title":[{"title":"SIAM journal on optimization","title_sort":"SIAM journal on optimization"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Philadelphia, Pa.","publisher":"SIAM","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"id":{"eki":["266885497"],"zdb":["1468414-7"],"issn":["1095-7189"]},"name":{"displayForm":["Society for Industrial and Applied Mathematics"]}}],"physDesc":[{"extent":"28 S."}],"title":[{"title_sort":"active-set method for quadratic programming based on sequential hot-starts","title":"An active-set method for quadratic programming based on sequential hot-starts"}],"person":[{"given":"Travis C.","family":"Johnson","role":"aut","display":"Johnson, Travis C.","roleDisplay":"VerfasserIn"},{"family":"Kirches","given":"Christian","roleDisplay":"VerfasserIn","display":"Kirches, Christian","role":"aut"},{"family":"Wächter","given":"Andreas","roleDisplay":"VerfasserIn","display":"Wächter, Andreas","role":"aut"}],"recId":"1700251023","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 09.06.2020"]} 
SRT |a JOHNSONTRAACTIVESETM7201