Temporal integration of auxin information for the regulation of patterning

Positional information is essential for coordinating the development of multicellular organisms. In plants, positional information provided by the hormone auxin regulates rhythmic organ production at the shoot apex, but the spatio-temporal dynamics of auxin gradients is unknown. We used quantitative...

Full description

Saved in:
Bibliographic Details
Main Authors: Galvan-Ampudia, Carlos (Author) , Cerutti, Guillaume (Author) , Legrand, Jonathan (Author) , Brunoud, Géraldine (Author) , Martin-Arevalillo, Raquel (Author) , Azais, Romain (Author) , Bayle, Vincent (Author) , Moussu, Steven (Author) , Wenzl, Christian (Author) , Jaillais, Yvon (Author) , Lohmann, Jan U. (Author) , Godin, Christophe (Author) , Vernoux, Teva (Author)
Format: Article (Journal)
Language:English
Published: 07 May 2020
In: eLife
Year: 2020, Volume: 9
ISSN:2050-084X
DOI:10.7554/eLife.55832
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.7554/eLife.55832
Get full text
Author Notes:Carlos S Galvan-Ampudia, Guillaume Cerutti, Jonathan Legrand, Géraldine Brunoud, Raquel Martin-Arevalillo, Romain Azais, Vincent Bayle, Steven Moussu, Christian Wenzl, Yvon Jaillais, Jan U Lohmann, Christophe Godin, Teva Vernoux
Description
Summary:Positional information is essential for coordinating the development of multicellular organisms. In plants, positional information provided by the hormone auxin regulates rhythmic organ production at the shoot apex, but the spatio-temporal dynamics of auxin gradients is unknown. We used quantitative imaging to demonstrate that auxin carries high-definition graded information not only in space but also in time. We show that, during organogenesis, temporal patterns of auxin arise from rhythmic centrifugal waves of high auxin travelling through the tissue faster than growth. We further demonstrate that temporal integration of auxin concentration is required to trigger the auxin-dependent transcription associated with organogenesis. This provides a mechanism to temporally differentiate sites of organ initiation and exemplifies how spatio-temporal positional information can be used to create rhythmicity.
Item Description:Gesehen am 10.06.2020
Physical Description:Online Resource
ISSN:2050-084X
DOI:10.7554/eLife.55832