Computer-aided diagnosis from weak supervision: a benchmarking study

Supervised machine learning is a powerful tool frequently used in computer-aided diagnosis (CAD) applications. The bottleneck of this technique is its demand for fine grained expert annotations, which are tedious for medical image analysis applications. Furthermore, information is typically localize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kandemir, Melih (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2015
In: Computerized medical imaging and graphics
Year: 2014, Jahrgang: 42, Pages: 44-50
ISSN:1879-0771
DOI:10.1016/j.compmedimag.2014.11.010
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.compmedimag.2014.11.010
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0895611114001852
Volltext
Verfasserangaben:Melih Kandemir, Fred A. Hamprecht

MARC

LEADER 00000caa a2200000 c 4500
001 1700498967
003 DE-627
005 20230427020144.0
007 cr uuu---uuuuu
008 200612r20152014xx |||||o 00| ||eng c
024 7 |a 10.1016/j.compmedimag.2014.11.010  |2 doi 
035 |a (DE-627)1700498967 
035 |a (DE-599)KXP1700498967 
035 |a (OCoLC)1341339337 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kandemir, Melih  |d 1983-  |e VerfasserIn  |0 (DE-588)1067700463  |0 (DE-627)819103551  |0 (DE-576)426867181  |4 aut 
245 1 0 |a Computer-aided diagnosis from weak supervision  |b a benchmarking study  |c Melih Kandemir, Fred A. Hamprecht 
264 1 |c 2015 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 20 November 2014 
500 |a Gesehen am 12.06.2020 
520 |a Supervised machine learning is a powerful tool frequently used in computer-aided diagnosis (CAD) applications. The bottleneck of this technique is its demand for fine grained expert annotations, which are tedious for medical image analysis applications. Furthermore, information is typically localized in diagnostic images, which makes representation of an entire image by a single feature set problematic. The multiple instance learning framework serves as a remedy to these two problems by allowing labels to be provided for groups of observations, called bags, and assuming the group label to be the maximum of the instance labels within the bag. This setup can effectively be applied to CAD by splitting a given diagnostic image into a Cartesian grid, treating each grid element (patch) as an instance by representing it with a feature set, and grouping instances belonging to the same image into a bag. We quantify the power of existing multiple instance learning methods by evaluating their performance on two distinct CAD applications: (i) Barrett's cancer diagnosis and (ii) diabetic retinopathy screening. In the experiments, mi-Graph appears as the best-performing method in bag-level prediction (i.e. diagnosis) for both of these applications that have drastically different visual characteristics. For instance-level prediction (i.e. disease localization), mi-SVM ranks as the most accurate method. 
534 |c 2014 
650 4 |a Cancer diagnosis 
650 4 |a Diabetic retinopathy screening 
650 4 |a Multiple instance learning 
700 1 |a Hamprecht, Fred  |e VerfasserIn  |0 (DE-588)1020505605  |0 (DE-627)691240280  |0 (DE-576)360605516  |4 aut 
773 0 8 |i Enthalten in  |t Computerized medical imaging and graphics  |d Amsterdam [u.a.] : Elsevier Science, 1988  |g 42(2015), Seite 44-50  |h Online-Ressource  |w (DE-627)320440257  |w (DE-600)2004841-5  |w (DE-576)094531366  |x 1879-0771  |7 nnas  |a Computer-aided diagnosis from weak supervision a benchmarking study 
773 1 8 |g volume:42  |g year:2015  |g pages:44-50  |g extent:7  |a Computer-aided diagnosis from weak supervision a benchmarking study 
856 4 0 |u https://doi.org/10.1016/j.compmedimag.2014.11.010  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0895611114001852  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200612 
993 |a Article 
994 |a 2015 
998 |g 1020505605  |a Hamprecht, Fred  |m 1020505605:Hamprecht, Fred  |d 700000  |d 708070  |e 700000PH1020505605  |e 708070PH1020505605  |k 0/700000/  |k 1/700000/708070/  |p 2  |y j 
998 |g 1067700463  |a Kandemir, Melih  |m 1067700463:Kandemir, Melih  |d 700000  |d 708070  |e 700000PK1067700463  |e 708070PK1067700463  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1700498967  |e 3686609134 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"note":["Available online 20 November 2014","Gesehen am 12.06.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2015","dateIssuedKey":"2015"}],"title":[{"title_sort":"Computer-aided diagnosis from weak supervision","subtitle":"a benchmarking study","title":"Computer-aided diagnosis from weak supervision"}],"person":[{"role":"aut","given":"Melih","display":"Kandemir, Melih","family":"Kandemir"},{"display":"Hamprecht, Fred","family":"Hamprecht","given":"Fred","role":"aut"}],"id":{"eki":["1700498967"],"doi":["10.1016/j.compmedimag.2014.11.010"]},"relHost":[{"disp":"Computer-aided diagnosis from weak supervision a benchmarking studyComputerized medical imaging and graphics","language":["eng"],"part":{"volume":"42","extent":"7","pages":"44-50","text":"42(2015), Seite 44-50","year":"2015"},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 06.01.2021"],"origin":[{"dateIssuedDisp":"1988-","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1988","publisher":"Elsevier Science"}],"title":[{"title":"Computerized medical imaging and graphics","title_sort":"Computerized medical imaging and graphics","subtitle":"the international journal on imaging and image-archiving in all medical specialties ; the official journal of the Computerized Medical Image Society"}],"recId":"320440257","pubHistory":["Nachgewiesen 12.1988 -"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1879-0771"],"eki":["320440257"],"zdb":["2004841-5"]}}],"recId":"1700498967","physDesc":[{"extent":"7 S."}],"name":{"displayForm":["Melih Kandemir, Fred A. Hamprecht"]}} 
SRT |a KANDEMIRMECOMPUTERAI2015