Unconventional apoptosis of polymorphonuclear neutrophils (PMN): staurosporine delays exposure of phosphatidylserine and prevents phagocytosis by M[phi]-2 macrophages of PMN

Apoptosis of polymorphonuclear neutrophils (PMN) and subsequent ‘silent’ removal represents an important check-point for the resolution of inflammation. Failure in PMN clearance resulting in secondary necrosis-driven tissue damage has been implicated in conditions of chronic inflammation and autoimm...

Full description

Saved in:
Bibliographic Details
Main Authors: Franz, Sandra (Author) , Muñoz Becerra, Luis Enrique (Author) , Heyder, Petra (Author) , Herrmann, Martin (Author) , Schiller, Martin (Author)
Format: Article (Journal)
Language:English
Published: 2015
In: Clinical & experimental immunology
Year: 2014, Volume: 179, Issue: 1, Pages: 75-84
ISSN:1365-2249
DOI:10.1111/cei.12412
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1111/cei.12412
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/cei.12412
Get full text
Author Notes:S. Franz, L.E. Muñoz, P. Heyder, M. Herrmann and M. Schiller
Description
Summary:Apoptosis of polymorphonuclear neutrophils (PMN) and subsequent ‘silent’ removal represents an important check-point for the resolution of inflammation. Failure in PMN clearance resulting in secondary necrosis-driven tissue damage has been implicated in conditions of chronic inflammation and autoimmunity. Apoptotic PMN undergo profound biophysical changes that warrant their efficient recognition and uptake by phagocytes before fading to secondary necrosis. In this study, we demonstrate that staurosporine (STS), a non-selective but potent inhibitor of cyclin-dependent kinase and protein kinase C, exerts a drastic impact on PMN apoptosis. PMN treated with STS underwent an unconventional form of cell death characterized by a delayed exposure of aminophospholipids, including phosphatidylserine (PS) and phosphatidylethanolamine and an increased exposure of neo-glycans. STS caused an impaired cellular fragmentation and accelerated DNA fragmentation. Phagocytosis of STS-treated PMN lacking PS on their surfaces was decreased significantly, which highlights the importance of PS for the clearance of apoptotic PMN. Specific opsonization with immune complexes completely restored phagocytosis of STS-treated PMN, demonstrating the efficiency of back-up clearance pathways in the absence of PS exposure.
Item Description:Im Titel ist "phi" als griechischer Buchstabe dargestellt
First published: 03 July 2014
Gesehen am 12.06.2020
Physical Description:Online Resource
ISSN:1365-2249
DOI:10.1111/cei.12412