Quantitative oscillation estimates for almost-umbilical closed hypersurfaces in euklidean spaces

We prove ϵ{epsilon}-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is δ{delta} small compared to the mean curvature. We give the explicit dependence of δ{delta} on ϵ{epsilon} within the class of uniformly convex hypersurfaces...

Full description

Saved in:
Bibliographic Details
Main Author: Scheuer, Julian (Author)
Format: Article (Journal)
Language:English
Published: 17 April 2015
In: Bulletin of the Australian Mathematical Society
Year: 2015, Volume: 92, Issue: 1, Pages: 133-144
ISSN:1755-1633
DOI:10.1017/S0004972715000222
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0004972715000222
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/quantitative-oscillation-estimates-for-almost-umbilical-closed-hypersurfaces-in-euclidean-space/A821E205EE45C9280CEEEF60306FF2F9
Get full text
Author Notes:Julian Scheuer
Description
Summary:We prove ϵ{epsilon}-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is δ{delta} small compared to the mean curvature. We give the explicit dependence of δ{delta} on ϵ{epsilon} within the class of uniformly convex hypersurfaces with bounded volume.
Item Description:Gesehen am 18.06.2020
Physical Description:Online Resource
ISSN:1755-1633
DOI:10.1017/S0004972715000222