Gradient estimates for inverse curvature flows in hyperbolic space

Abstract: We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative - powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for - hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of...

Full description

Saved in:
Bibliographic Details
Main Author: Scheuer, Julian (Author)
Format: Article (Journal)
Language:English
Published: 21 January 2015
In: Geometric flows
Year: 2015, Volume: 1, Issue: 1, Pages: 11-16
ISSN:2353-3382
DOI:10.1515/geofl-2015-0002
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/geofl-2015-0002
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/view/journals/geofl/open-issue/article-10.1515-geofl-2015-0002/article-10.1515-geofl-2015-0002.xml
Get full text
Author Notes:Julian Scheuer
Description
Summary:Abstract: We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative - powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for - hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces - without any further pinching condition besides convexity of the initial hypersurface.
Item Description:Gesehen am 18.06.2020
Physical Description:Online Resource
ISSN:2353-3382
DOI:10.1515/geofl-2015-0002