Gradient estimates for inverse curvature flows in hyperbolic space
Abstract: We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative - powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for - hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
21 January 2015
|
| In: |
Geometric flows
Year: 2015, Volume: 1, Issue: 1, Pages: 11-16 |
| ISSN: | 2353-3382 |
| DOI: | 10.1515/geofl-2015-0002 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/geofl-2015-0002 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/view/journals/geofl/open-issue/article-10.1515-geofl-2015-0002/article-10.1515-geofl-2015-0002.xml |
| Author Notes: | Julian Scheuer |
| Summary: | Abstract: We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative - powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for - hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces - without any further pinching condition besides convexity of the initial hypersurface. |
|---|---|
| Item Description: | Gesehen am 18.06.2020 |
| Physical Description: | Online Resource |
| ISSN: | 2353-3382 |
| DOI: | 10.1515/geofl-2015-0002 |