Gradient estimates for inverse curvature flows in hyperbolic space

Abstract: We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative - powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for - hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Scheuer, Julian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 January 2015
In: Geometric flows
Year: 2015, Jahrgang: 1, Heft: 1, Pages: 11-16
ISSN:2353-3382
DOI:10.1515/geofl-2015-0002
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/geofl-2015-0002
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/view/journals/geofl/open-issue/article-10.1515-geofl-2015-0002/article-10.1515-geofl-2015-0002.xml
Volltext
Verfasserangaben:Julian Scheuer
Beschreibung
Zusammenfassung:Abstract: We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative - powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for - hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces - without any further pinching condition besides convexity of the initial hypersurface.
Beschreibung:Gesehen am 18.06.2020
Beschreibung:Online Resource
ISSN:2353-3382
DOI:10.1515/geofl-2015-0002