LECANDUS study (LEsion CANdidate Detection in UltraSound Data): evaluation of image analysis algorithms for breast lesion detection in volume ultrasound data
This study aims at developing and evaluating a prototype of a lesion candidate detection algorithm for a 3D-US computer-aided diagnosis (CAD) system.
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
28 May 2016
|
| In: |
Archives of gynecology and obstetrics
Year: 2016, Volume: 294, Issue: 2, Pages: 423-428 |
| ISSN: | 1432-0711 |
| DOI: | 10.1007/s00404-016-4127-5 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00404-016-4127-5 |
| Author Notes: | Michael Golatta, Désirée Zeegers, Konstantinos Filippatos, Leah-Larissa Binder, Alexander Scharf, Geraldine Rauch, Joachim Rom, Florian Schütz, Christof Sohn, Joerg Heil |
| Summary: | This study aims at developing and evaluating a prototype of a lesion candidate detection algorithm for a 3D-US computer-aided diagnosis (CAD) system. |
|---|---|
| Item Description: | Gesehen am 30.06.2020 |
| Physical Description: | Online Resource |
| ISSN: | 1432-0711 |
| DOI: | 10.1007/s00404-016-4127-5 |