Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization

We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of...

Full description

Saved in:
Bibliographic Details
Main Authors: Willenbockel, Martin (Author) , Maurer, Reinhard J. (Author) , Bronner, Christopher (Author) , Schulze, Michael (Author) , Stadtmüller, Benjamin (Author) , Soubatch, Serguei (Author) , Tegeder, Petra (Author) , Reuter, Karsten (Author) , Tautz, F. Stefan (Author)
Format: Article (Journal)
Language:English
Published: 28 August 2015
In: Chemical communications
Year: 2015, Volume: 51, Issue: 83, Pages: 15324-15327
ISSN:1364-548X
DOI:10.1039/C5CC05003K
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1039/C5CC05003K
Verlag, lizenzpflichtig, Volltext: https://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc05003k
Get full text
Author Notes:Martin Willenbockel, Reinhard J. Maurer, Christopher Bronner, Michael Schulze, Benjamin Stadtmüller, Serguei Soubatch, Petra Tegeder, Karsten Reuter and F. Stefan Tautz
Description
Summary:We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.
Item Description:Gesehen am 02.07.2020
Physical Description:Online Resource
ISSN:1364-548X
DOI:10.1039/C5CC05003K