Imaging an aligned polyatomic molecule with laser-induced electron diffraction

Laser-induced electron diffraction is an evolving tabletop method that aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-Ångström spatial and femtosecond temporal resolutions. Here we demonstrate the retrieval of multiple bond lengths from a polyatomic molecule...

Full description

Saved in:
Bibliographic Details
Main Authors: Pullen, Michael G. (Author) , Wolter, Benjamin (Author) , Le, Anh-Thu (Author) , Baudisch, Matthias (Author) , Hemmer, Michaël (Author) , Senftleben, Arne (Author) , Schröter, Claus Dieter (Author) , Ullrich, Joachim (Author) , Moshammer, Robert (Author) , Lin, C. D. (Author) , Biegert, Jens (Author)
Format: Article (Journal)
Language:English
Published: 24 Jun 2015
In: Nature Communications
Year: 2015, Volume: 6
ISSN:2041-1723
DOI:10.1038/ncomms8262
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/ncomms8262
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/ncomms8262
Get full text
Author Notes:Michael G. Pullen, Benjamin Wolter, Anh-Thu Le, Matthias Baudisch, Michaël Hemmer, Arne Senftleben, Claus Dieter Schröter, Joachim Ullrich, Robert Moshammer, C. D. Lin & Jens Biegert
Description
Summary:Laser-induced electron diffraction is an evolving tabletop method that aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-Ångström spatial and femtosecond temporal resolutions. Here we demonstrate the retrieval of multiple bond lengths from a polyatomic molecule by simultaneously measuring the C-C and C-H bond lengths in aligned acetylene. Our approach takes the method beyond the hitherto achieved imaging of simple diatomic molecules and is based on the combination of a 160 kHz mid-infrared few-cycle laser source with full three-dimensional electron-ion coincidence detection. Our technique provides an accessible and robust route towards imaging ultrafast processes in complex gas-phase molecules with atto- to femto-second temporal resolution.
Item Description:Gesehen am 16.07.2020
Physical Description:Online Resource
ISSN:2041-1723
DOI:10.1038/ncomms8262