Micron-scale hypervelocity impact craters: dependence of crater ellipticity and rim morphology on impact trajectory, projectile size, velocity, and shape

The interstellar collector on NASA's Stardust mission captured many particles from sources other than the interstellar dust stream. Impact trajectory may provide a means of discriminating between these different sources, and thus identifying/eliminating candidate interstellar particles. The col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wozniakiewicz, Penny (VerfasserIn) , Price, M. C. (VerfasserIn) , Armes, S. P. (VerfasserIn) , Burchell, M. J. (VerfasserIn) , Cole, M. J. (VerfasserIn) , Fielding, L. A. (VerfasserIn) , Hillier, Jon (VerfasserIn) , Lovett, J. R. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 October 2014
In: Meteoritics & planetary science
Year: 2014, Jahrgang: 49, Heft: 10, Pages: 1929-1947
ISSN:1945-5100
DOI:10.1111/maps.12364
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1111/maps.12364
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.12364
Volltext
Verfasserangaben:P.J. Wozniakiewicz, M.C. Price, S.P. Armes, M.J. Burchell, M.J. Cole, L.A. Fielding, J.K. Hillier, and J.R. Lovett
Beschreibung
Zusammenfassung:The interstellar collector on NASA's Stardust mission captured many particles from sources other than the interstellar dust stream. Impact trajectory may provide a means of discriminating between these different sources, and thus identifying/eliminating candidate interstellar particles. The collector's aerogel preserved a clear record of particle impact trajectory from the inclination and direction of the resultant tracks. However, the collector also contained aluminum foils and, although impact crater studies to date suggest only the most inclined impacts (>45° from normal) produce crater morphologies that indicate trajectory (i.e., distinctly elliptical), these studies have been restricted to much larger (mm and above) scales than are relevant for Stardust (μm). It is unknown how oblique impact crater morphology varies as a function of length scale, and therefore how well Stardust craters preserve details of impactor trajectory. Here, we present data from a series of impact experiments, together with complementary hydrocode modeling, that examine how crater morphology changes with impact angles for different-sized projectiles. We find that, for our smallest spherical projectiles (2 μm diameter), the ellipticity and rim morphology provide evidence of their inclined trajectory from as little as 15° from normal incidence. This is most likely a result of strain rate hardening in the target metal. Further experiments and models find that variation in velocity and impactor shape complicate these trends, but that rim morphology remains useful in determining impact direction (where the angle of impact is >20° from normal) and may help identify candidate interstellar particle craters on the Stardust collector.
Beschreibung:Gesehen am 16.07.2020
Beschreibung:Online Resource
ISSN:1945-5100
DOI:10.1111/maps.12364