Rédei symbols and arithmetical mild pro-2-groups

Generalizing results of Morishita and Vogel, an explicit description of the triple Massey product for the Galois group $$G_S(2)$$GS(2)of the maximal 2-extension of $$\mathbb {Q}$$Qunramified outside a finite set of prime numbers $$S$$Scontaining 2 is given in terms of Rédei symbols. We show that ce...

Full description

Saved in:
Bibliographic Details
Main Author: Gärtner, Jochen (Author)
Format: Article (Journal)
Language:English
Published: 29 July 2014
In: Annales mathématiques du Québec
Year: 2014, Volume: 38, Issue: 1, Pages: 13-36
ISSN:2195-4763
DOI:10.1007/s40316-014-0021-3
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s40316-014-0021-3
Get full text
Author Notes:Jochen Gärtner
Description
Summary:Generalizing results of Morishita and Vogel, an explicit description of the triple Massey product for the Galois group $$G_S(2)$$GS(2)of the maximal 2-extension of $$\mathbb {Q}$$Qunramified outside a finite set of prime numbers $$S$$Scontaining 2 is given in terms of Rédei symbols. We show that certain mild pro-$$2$$2-groups with Zassenhaus invariant $$3$$3occur as Galois groups of the form $$G_S(2)$$GS(2). Furthermore, a non-analytic mild fab pro-$$2$$2-group having only $$3$$3generators is constructed.
Item Description:Gesehen am 28.07.2020
Physical Description:Online Resource
ISSN:2195-4763
DOI:10.1007/s40316-014-0021-3