Rédei symbols and arithmetical mild pro-2-groups
Generalizing results of Morishita and Vogel, an explicit description of the triple Massey product for the Galois group $$G_S(2)$$GS(2)of the maximal 2-extension of $$\mathbb {Q}$$Qunramified outside a finite set of prime numbers $$S$$Scontaining 2 is given in terms of Rédei symbols. We show that ce...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
29 July 2014
|
| In: |
Annales mathématiques du Québec
Year: 2014, Volume: 38, Issue: 1, Pages: 13-36 |
| ISSN: | 2195-4763 |
| DOI: | 10.1007/s40316-014-0021-3 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s40316-014-0021-3 |
| Author Notes: | Jochen Gärtner |
| Summary: | Generalizing results of Morishita and Vogel, an explicit description of the triple Massey product for the Galois group $$G_S(2)$$GS(2)of the maximal 2-extension of $$\mathbb {Q}$$Qunramified outside a finite set of prime numbers $$S$$Scontaining 2 is given in terms of Rédei symbols. We show that certain mild pro-$$2$$2-groups with Zassenhaus invariant $$3$$3occur as Galois groups of the form $$G_S(2)$$GS(2). Furthermore, a non-analytic mild fab pro-$$2$$2-group having only $$3$$3generators is constructed. |
|---|---|
| Item Description: | Gesehen am 28.07.2020 |
| Physical Description: | Online Resource |
| ISSN: | 2195-4763 |
| DOI: | 10.1007/s40316-014-0021-3 |